Corindus Vascular Robotics (CVRS)
November 2017
Forward Looking Statements

This presentation contains “forward-looking statements” (as such term is defined in section 27a of the securities act of 1933, as amended, and section 21e of the securities exchange act of 1934, as amended), and information relating to the company, that are based on the current beliefs of, and assumptions made by our management and the information currently available to our management. Forward-looking statements relate to expectations concerning matters that are not historical facts. Words such as "anticipate," "believe," "estimate," "expect," "intend," "plan," "predict," "opinion," "will" and similar expressions and their variants, are intended to identify forward-looking statements. These forward-looking statements include, but are not limited to statements related to our expected business, products, adoption of robotic medical procedures, results of operations, future financial condition, ability to increase our revenues, and similar matters. These forward-looking statements should be considered in light of various important factors, including, without limitation, the rate of adoption of our CorPath system and the rate of use of our cassettes; risks associated with market acceptance, including pricing and reimbursement; our ability to enforce our intellectual property rights; our need for additional funds to support our operations; our ability to manage expenses and cash flow; factors relating to engineering, regulatory, manufacturing, sales and customer service challenges; potential safety and regulatory issues that could slow or suspend our sales; the effect of credit, financial and economic conditions on capital spending by our potential customers; the impact of global and regional economic and credit market conditions on health care spending; health care reform legislation in the United States and its impact on hospital spending, reimbursement and fees which will be levied on certain medical device revenues, decreases in hospital admissions and actions by payers to limit or manage surgical procedures timing and success of product development and market acceptance of developed products, procedure counts; regulatory approvals, clearances and restrictions; guidelines and recommendations in the health care and patient communities, intellectual property positions and litigation, competition in the medical device industry and in the specific markets of surgery in which we operate, the inability to meet demand for products, the results of legal proceedings to which we are or may become a party, product liability and other litigation claims, adverse publicity regarding our company and safety of our products and the adequacy of training; our ability to expand in foreign markets; and other risk factors. Readers are cautioned not to place undue reliance on these forward-looking statements, which are based on current expectation and are subject to risks, uncertainties; and assumptions that are difficult to predict, including those risk factors described in the company’s annual report on form 10-K for the fiscal year ended on December 31, 2016. Our actual results may differ materially and adversely from those expressed in any forward-looking statements. We undertake no obligation to publicly update or release any revisions to these forward-looking statements except as required by law.
Corindus Today
A leader in vascular robotics

LARGE Market Opportunity with Long **GROWTH** Runway
$4.5B\(^1\) market opportunity in 2018 driven by over 2.5 million coronary and 3 million non-coronary procedures performed per year

DIFFERENTIATED Technology
ONLY FDA cleared robotic platform for percutaneous coronary intervention (“PCI”) and peripheral interventions\(^2\)

Proving **BENEFIT** to Patient, Physician, and Hospital
Robotic precision reduces stent utilization to improve clinical outcomes\(^3,4\)
Reducing radiation exposure for patients, physicians & lab staff\(^5\)

Leading **INNOVATION** in Vascular Robotics
Strong product development pipeline backed by robust IP portfolio
Open architecture leverages hospital ecosystem & enables partnerships

1 Market opportunity assessment based on market research reports and Corindus estimate
2 Only the CorPath 200 System is indicated for use in peripheral vascular interventions
5 Weisz, G. et al. Safety and Feasibility of Robotic Percutaneous Coronary Intervention: PRECISE Study. J Am Coll Cardiol. 2013;61(15):1596-1600. PRECISE Trial was conducted with the CorPath 200 System.
Interventional Market Opportunity
Large & growing worldwide market

$4.5B1

$1.33B
NON-PCI

$1.14B
PCI

$1.19B
NON-PCI

$0.88B
PCI

OUS

US

Market Opportunity

- $4.5B FY2018 market estimate1
- Non-PCI procedure types: Peripheral Vascular2, Neurointerventional and Structural Heart
- 2018 estimated PCI procedure volume3:
 - 933,000 in the US
 - 1,800,000 OUS
- 2018 estimated non-PCI procedure volume3:
 - 1,200,000 in the US
 - 1,800,000 OUS

1 Market opportunity assessment based on market research reports and Corindus estimate
2 Peripheral Vascular includes lower limb, carotid, renal, iliac and AAA (abdominal aortic aneurysm) procedures
3 Millennium Research Group
Market Drivers

Corindus poised for growth in PCI robotics market

FAVORABLE PATIENT DEMOGRAPHICS

SHORTAGE OF DOCTORS

DISRUPTIVE TECHNOLOGY

CONTINUED GROWTH OF PCI PROCEDURES WORLDWIDE
Company Milestones

Next Generation
CorPath GRX cleared by FDA with Guide Catheter Control and Enhanced User Interface

Adoption
CorPath GRX seeing high utilization in cath labs & 2x increase in adoption with existing customers

Commercial Momentum
Installations at leading centers including Houston Methodist & William Beaumont

Global
Signed Distribution Agreement with #2 company in Japan (Mitsubishi)
Traditional PCI vs CorPath Robotic PCI

Robotic precision may improve outcomes, economics and safety

Today’s Cath Lab Environment

- High radiation exposure
- Significant fatigue and orthopedic strain

Robotic Cath Lab

- Shields from radiation
- Potential to reduce fatigue and orthopedic strain

Manual PCI vs Robotic-assisted PCI

<table>
<thead>
<tr>
<th>Manual PCI Steps</th>
<th>PCI Steps</th>
<th>Robotic-assisted PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Struggle to see angiography</td>
<td>Assess Anatomy</td>
<td>Close proximity ergonomic visualization</td>
</tr>
<tr>
<td>Trial & error, wire spinning</td>
<td>Navigate</td>
<td>Precise ‘Point & Shoot’ predictability</td>
</tr>
<tr>
<td>‘Eyeball’ estimate</td>
<td>Measure Anatomy</td>
<td>Robotic-assisted sub-mm Measurement</td>
</tr>
<tr>
<td>Manual adjustment</td>
<td>Position Stent</td>
<td>1mm precise positioning</td>
</tr>
<tr>
<td>Devices loose during inflation</td>
<td>Deploy Stent</td>
<td>Fixated devices during deployment</td>
</tr>
</tbody>
</table>
Why VascularRobotics

Benefits for patients, physicians, & hospitals

<table>
<thead>
<tr>
<th>PATIENT BENEFIT</th>
<th>PROTECTION</th>
<th>FUTURE</th>
<th>DIFFERENTIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Robotic precision to reduce stent utilization</td>
<td>• 95% reduction radiation exposure to physician</td>
<td>• Significant growth in robotic research and publications</td>
<td>• Position hospital on the cutting edge by deploying robotics as part of a hi-tech cardiology model</td>
</tr>
<tr>
<td>• 17% reduction in radiation exposure to patient</td>
<td>• Sit comfortably without the need for lead</td>
<td>• Relevancy</td>
<td>• Clinical leadership</td>
</tr>
<tr>
<td>• Robotics may facilitate increased radial adoption</td>
<td>• 15% reduction in radiation exposure to bedside staff</td>
<td>• Involvement in tech development and medical education</td>
<td>• Attract & retain physicians</td>
</tr>
</tbody>
</table>

Confidential Corindus Inc.
Evolution of Interventional Treatment

Hi-tech cardiology model with robotics

Current Robotic Capabilities

- Precision Treatment
 - Precise robotic movement
 - Enhanced visualization
 - Multi-device control

- Safety & Wellness
 - Physician safety & comfort
 - Staff safety & skill development
 - Patient safety

- Differentiation
 - Enable radial adoption
 - Robotic program marketing

Future Robotic Capabilities

- Improved Capabilities
 - Lesion assessment
 - Lesion preparation
 - Expanded device compatibility

- Access to Care
 - Teleproctoring
 - Telestenting

- Improved Efficiency
 - Integrated decision making tools
 - Procedural automation
 - Prescriptive analytics

Traditional PCI

- Clinical Outcomes
 - Good success rates
 - Increasingly complex cases

- Occupational Hazards
 - High risk working environment
 - Physician burnout

- Stagnant Market
 - Competition for market share
 - Radial adoption slow

Confidential Corindus Inc.
The REMOTE-PCI Study explored the feasibility of remote telestenting using a robotic system. A single-center, prospective observational study was performed at Spectrum Health, Grand Rapids, MI, involving 20 patients treated via a physician at a remote cockpit leveraging telehealth technology. The study showed 86.4% technical success and 95% procedural success. Madder R, et al. “Percutaneous coronary intervention using a combination of robotics and telecommunications by an operator in a separate physical location from the patient: an early exploration into the feasibility of telestenting (the REMOTE-PCI study).” Eurointervention, 2017;12:1569-1576. This study, conducted under local IRB, may involve off-label usage and was not sponsored by Corindus.
CorPath 200 and CorPath GRX Systems are indicated for PCI. Only the CorPath 200 System is indicated for use in peripheral vascular interventions. CorPath Systems are not indicated for use in neuro or structural interventions.
Clinical Leadership
Advancing vascular robotics

CMO

Executive Advisor

Board of Directors

J. Aaron Grantham, MD
Saint Luke's Hospital of Kansas City

Marty Leon, MD
NewYork-Presbyterian Hospital

Louis Cannon, MD
BioStar Ventures

Campbell Rogers, MD
HeartFlow

Steering Committee

Steven Almany, MD
Beaumont Hospital

David Kandzari, MD
Piedmont Heart

Bill Lombardi, MD
University of Washington

Ryan Madder, MD
Spectrum Health

Giora Weisz, MD
Montefiore Medical Center
Corindus Tomorrow

Growth in PCI
Increasing robotics globally; growing body of clinical research

New Partnerships
Collaborating on device integration to advance hi-tech cardiology model, partnering to deliver medical education programs

Expanded Capabilities
First Automated Movement planned submission to FDA, expanding indications to peripheral

Global Expansion
Planned expansion into China

Realizing Remote
Developing partnerships to commercialize telestenting, advancing training with teleproctoring
Strategic Objectives

Corindus Vascular Robotics

Near Term

- Establish at least 25 new robotic programs
- Pursue co-development opportunities, add at least one additional collaboration
- Drive system utilization
- Prepare Japan distributor for launch
- Ramp up educational and training opportunities for physicians
- Further clinical trial development
- Software enhancement – Gen 2.2

Mid to Long Term

- Recurring revenue streams and NG3 system launch
- Expansion into additional disease states (neurovascular and structural heart)
- Global expansion and remote tele-proctoring
Financial Snapshot

<table>
<thead>
<tr>
<th>Key Financial Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and Cash Equivalents*</td>
</tr>
<tr>
<td>$26.2 million</td>
</tr>
<tr>
<td>Debt* - Outstanding principal balance</td>
</tr>
<tr>
<td>$250,000</td>
</tr>
</tbody>
</table>

*As of September 30, 2017
Corindus Vascular Robotics, Inc. is a global technology leader in robotic-assisted vascular interventions. The company's CorPath® System is the first FDA-cleared medical device to bring robotic-assisted precision to percutaneous coronary interventions. With the CorPath System, Corindus Vascular Robotics brings robotic precision to interventional procedures to help optimize clinical outcomes and minimize the costs associated with complications of improper stent placement with manual procedures.

Visit us at www.corindus.com