Forward Looking Statements

THIS PRESENTATION CONTAINS "FORWARD-LOOKING STATEMENTS" (AS SUCH TERM IS DEFINED IN SECTION 27A OF THE SECURITIES ACT OF 1933, AS AMENDED, AND SECTION 21E OF THE SECURITIES EXCHANGE ACT OF 1934, AS AMENDED), AND INFORMATION RELATING TO THE COMPANY, THAT ARE BASED ON THE CURRENT BELIEFS OF, AND ASSUMPTIONS MADE BY OUR MANAGEMENT AND THE INFORMATION CURRENTLY AVAILABLE TO OUR MANAGEMENT. FORWARD-LOOKING STATEMENTS RELATE TO EXPECTATIONS CONCERNING MATTERS THAT ARE NOT HISTORICAL FACTS. WORDS SUCH AS "ANTICIPATE," "BELIEVE," "ESTIMATE," "EXPECT," "INTEND," "PLAN," "PREDICT," "OPINION," "WILL" AND SIMILAR EXPRESSIONS AND THEIR VARIANTS, ARE INTENDED TO IDENTIFY FORWARD-LOOKING STATEMENTS. THESE FORWARD-LOOKING STATEMENTS INCLUDE, BUT ARE NOT LIMITED TO STATEMENTS RELATED TO OUR EXPECTED BUSINESS, PRODUCTS, ADOPTION OF ROBOTIC MEDICAL PROCEDURES, RESULTS OF OPERATIONS, FUTURE FINANCIAL CONDITION, ABILITY TO INCREASE OUR REVENUES, AND SIMILAR MATTERS. THESE FORWARD-LOOKING STATEMENTS SHOULD BE CONSIDERED IN LIGHT OF VARIOUS IMPORTANT FACTORS, INCLUDING, WITHOUT LIMITATION, THE RATE OF ADOPTION OF OUR CORPATH SYSTEM AND THE RATE OF USE OF OUR CASSETTES; RISKS ASSOCIATED WITH MARKET ACCEPTANCE, INCLUDING PRICING AND REIMBURSEMENT; OUR ABILITY TO ENFORCE OUR INTELLECTUAL PROPERTY RIGHTS; OUR NEED FOR ADDITIONAL FUNDS TO SUPPORT OUR OPERATIONS; OUR ABILITY TO MANAGE EXPENSES AND CASH FLOW; FACTORS RELATING TO ENGINEERING, REGULATORY, MANUFACTURING, SALES AND CUSTOMER SERVICE CHALLENGES; POTENTIAL SAFETY AND REGULATORY ISSUES THAT COULD SLOW OR SUSPEND OUR SALES; THE EFFECT OF CREDIT, FINANCIAL AND ECONOMIC CONDITIONS ON CAPITAL SPENDING BY OUR POTENTIAL CUSTOMERS; THE IMPACT OF GLOBAL AND REGIONAL ECONOMIC AND CREDIT MARKET CONDITIONS ON HEALTH CARE SPENDING; HEALTH CARE REFORM LEGISLATION IN THE UNITED STATES AND ITS IMPACT ON HOSPITAL SPENDING; REIMBURSEMENT AND FEES WHICH WILL BE LEVIED ON CERTAIN MEDICAL DEVICE REVENUES, DECREASES IN HOSPITAL ADMISSIONS AND ACTIONS BY PAYERS TO LIMIT OR MANAGE SURGICAL PROCEDURES TIMING AND SUCCESS OF PRODUCT DEVELOPMENT AND MARKET ACCEPTANCE OF DEVELOPED PRODUCTS, PROCEDURE COUNTS; REGULATORY APPROVALS, CLEARANCES AND RESTRICTIONS; GUIDELINES AND RECOMMENDATIONS IN THE HEALTH CARE AND PATIENT COMMUNITIES, INTELLECTUAL PROPERTY POSITIONS AND LITIGATION, COMPETITION IN THE MEDICAL DEVICE INDUSTRY AND IN THE SPECIFIC MARKETS OF SURGERY IN WHICH WE OPERATE, THE INABILITY TO MEET DEMAND FOR PRODUCTS, THE RESULTS OF LEGAL PROCEEDINGS TO WHICH WE ARE OR MAY BECOME A PARTY, PRODUCT LIABILITY AND OTHER LITIGATION CLAIMS. ADVERSE PUBLICITY REGARDING OUR COMPANY AND SAFETY OF OUR PRODUCTS AND THE ADEQUACY OF TRAINING; OUR ABILITY TO EXPAND IN FOREIGN MARKETS; AND OTHER RISK FACTORS. READERS ARE CAUTIONED NOT TO PLACE UNDUE RELIANCE ON THESE FORWARD-LOOKING STATEMENTS, WHICH ARE BASED ON CURRENT EXPECTATION AND ARE SUBJECT TO RISKS, UNCERTAINTIES; AND ASSUMPTIONS THAT ARE DIFFICULT TO PREDICT, INCLUDING THOSE RISK FACTORS DESCRIBED IN THE COMPANY’S ANNUAL REPORT ON FORM 10-K FOR THE FISCAL YEAR ENDED ON DECEMBER 31, 2016. OUR ACTUAL RESULTS MAY DIFFER MATERIALLY AND ADVERSELY FROM THOSE EXPRESSED IN ANY FORWARD-LOOKING STATEMENTS. WE UNDERTAKE NO OBLIGATION TO PUBLICLY UPDATE OR RELEASE ANY REVISIONS TO THESE FORWARD-LOOKING STATEMENTS EXCEPT AS REQUIRED BY LAW.
Robotics Market

Robotics market expected to double in 4 years to $135B

Source: International Data Corporation
Global Medical Robotics Market

Healthcare sector expected to grow fastest

>30 companies developing robotic technologies

<table>
<thead>
<tr>
<th>Company</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intuitive Surgical</td>
<td>1<sup>st</sup> Surgical Robot for general laparoscopic procedures</td>
</tr>
<tr>
<td>Verb Surgical</td>
<td>Surgical robot with enhanced information for decision making</td>
</tr>
<tr>
<td>Google x Johnson</td>
<td></td>
</tr>
<tr>
<td>Mazor Robotics</td>
<td>Orthopedics – Spine surgery</td>
</tr>
<tr>
<td>Medtronic</td>
<td>Orthopedics</td>
</tr>
<tr>
<td>Corindus</td>
<td>1<sup>st</sup> robotic system for PCI</td>
</tr>
</tbody>
</table>
Interventional Market Opportunity
Large & growing worldwide market

$4.5B1$

$1.33B$ NON-PCI

$1.14B$ PCI

$1.19B$ NON-PCI

$0.88B$ PCI

OUS

US

- $4.5B$ FY2018 market estimate1
- Non-PCI procedure types: Peripheral Vascular2, Neurointerventional and Structural Heart
- 2018 estimated PCI procedure volume3:
 - 933,000 in the US
 - 1,800,000 OUS
- 2018 estimated non-PCI procedure volume3:
 - 1,200,000 in the US
 - 1,800,000 OUS

1 Market opportunity assessment based on market research reports and Corindus estimate
2 Peripheral Vascular includes lower limb, carotid, renal, iliac and AAA (abdominal aortic aneurysm) procedures
3 Millennium Research Group
Corindus Today
A leader in vascular robotics

LARGE Market Opportunity with Long **GROWTH** Runway
$4.5B\(^1\) market opportunity in 2018 driven by over 2.5 million coronary and 3 million non-coronary procedures performed per year

DIFFERENTIATED Technology
ONLY FDA cleared robotic platform for percutaneous coronary intervention (“PCI”), radial PCI and peripheral interventions*

Proving **BENEFIT** to Physician, Patient, Hospital
Studies have shown a greater than 95% reduction in radiation exposure for the physician when using CorPath System\(^2\)

Robust **INTELLECTUAL PROPERTY** Portfolio
With over 50 patents issued worldwide, Corindus has ring-fenced patents around co-axial robotic movement

\(^1\) Market opportunity assessment based on market research reports and Corindus estimate

\(^2\) Weisz, G. et al. Safety and Feasibility of Robotic Percutaneous Coronary Intervention: PRECISE Study. J Am Coll Cardiol. 2013;61(15):1596-1600. PRECISE Trial was conducted with the CorPath 200 System.

*Only the CorPath 200 System is indicated for use in peripheral vascular interventions
Recent Milestones

<table>
<thead>
<tr>
<th>GRX TRACTION</th>
<th>STRATEGIC AGREEMENT</th>
<th>MULTI-SYSTEM ORDERS</th>
<th>COMMERCIAL MOMENTUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases and Installations</td>
<td>Expansion to Asia</td>
<td>Building Robotic Programs</td>
<td>Momentum Building</td>
</tr>
</tbody>
</table>
| ▪ Over 100 cases have been performed using the GRX since its commercial launch | ▪ Japan Medicalnext the exclusive distributor of Corindus products in Japan* | ▪ Multi-system orders:
 o Baylor Health
 o WakeMed
 o Veterans Affairs (VA) Hospitals | ▪ $3.0 - $3.5 million in system revenue in 2017 backlog
 ▪ Full sales team of 24 reps: 12 actively looking at new programs and 12 focused on driving new adoption |
| ▪ 9 GRX Systems across 7 hospitals installed to date | ▪ Initial order for 12 CorPath GRX Systems with $2 million in advance | ▪ Completed 2 live cases with GRX at Fu Wai Hospital, China | |
| ▪ Upgrades underway | ▪ Completed 2 live cases with GRX at Fu Wai Hospital, China | | |

PMDA approval pending
New Leadership & Strengthening Team
Building operational & clinical excellence

Mark Toland
President & CEO
20 Year Medical Device Veteran

J. Aaron Grantham, MD
Chief Medical Officer
Practicing Interventional Cardiologist

Marty Leon, MD
Executive Advisor
Interventional Cardiology Thought Leader

Campbell Rogers, MD
Board of Directors
CMO of Heartflow

Louis Cannon, MD
Board of Directors
Managing Director, BioStar Ventures

Bill Lombardi, MD
Steering Committee
University of Washington

Sunil Rao, MD
Steering Committee
Duke University

Ryan Madder, MD
Steering Committee
Spectrum Health

David Kandzari, MD
Steering Committee
Piedmont Heart
Traditional PCI vs CorPath Robotic PCI

Today’s Cath Lab Environment
- High radiation exposure
- Significant fatigue and orthopedic strain

Robotic Cath Lab
- Shields from radiation
- Potential to reduce fatigue and orthopedic strain
Traditional PCI vs CorPath Robotic PCI

Robotic precision may improve outcomes, economics and safety

Today’s Cath Lab Environment
- High radiation exposure
- Significant fatigue and orthopedic strain

Robotic Cath Lab
- Shields from radiation
- Potential to reduce fatigue and orthopedic strain

<table>
<thead>
<tr>
<th>Manual PCI</th>
<th>PCI steps</th>
<th>Robotic-assisted PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Struggle to see angiography</td>
<td>Assess Anatomy</td>
<td>Close proximity ergonomic visualization</td>
</tr>
<tr>
<td>Trial & error, wire spinning</td>
<td>Navigate</td>
<td>Precise ‘Point & Shoot’ predictability</td>
</tr>
<tr>
<td>‘Eyeball’ estimate</td>
<td>Measure Anatomy</td>
<td>Robotic-assisted sub-mm Measurement</td>
</tr>
<tr>
<td>Manual adjustment</td>
<td>Position Stent</td>
<td>1mm precise positioning</td>
</tr>
<tr>
<td>Devices loose during inflation</td>
<td>Deploy Stent</td>
<td>Fixated devices during deployment</td>
</tr>
</tbody>
</table>
CorPath Clinical Benefit

Procedural Control
- Bedside improvements to enhance workflow
- Open architecture
- Potential to improve patient outcomes
- Evidence of success in complex PCI

Robotic Precision
- 1mm movements for precise positioning
- Sub mm measurement to select the most appropriate stent
- Reduce stent utilization

Protection
- Radiation protection to the physician
- Potential to reduce long-term orthopedic issues

Patient
- Resolution: 17%

Hospital
- Stent savings: 8.3%

Physician
- Radiation reduction: 95%

Weisz, G. et al. Safety and Feasibility of Robotic Percutaneous Coronary Intervention: PRECISE Study. J Am Coll Cardiol. 2013;61(15):1596-1600. PRECISE Trial was conducted with the CorPath 200 System. Clinical trials were conducted using the CorPath 200 System.
CorPath Technology Evolution
Generational improvements will fuel growth

GEN 1
LEARN
Protect Physician
- 48 Systems Placed^
- Demonstrated safety & efficacy
- Significant reduction in physician radiation exposure
- Precise robotic movement
- 25-50% of cases could be done with system

GEN 2
BUILD
Enhance Physician’s Skills
- Increased speed and efficiency*
- More physician control*
- Enhanced visualization for improved accuracy*
- Can perform more complex cases*
- Software enhancements for Advanced Device Manipulation planned
- 80-90% of cases can be done with system

GEN 3
SCALE
Do Things Physician Can’t Do Manually
- Remote Telestenting capabilities to rural areas globally
- Auto Navigation of devices for increased throughput
- Digital data algorithms to reduce variation of care
- Machine learnings

^ As of March 31, 2017
* Compared to the CorPath 200 System
The Next Generation is Here
CorPath GRX System

IMPROVED WORKFLOW FOR BEDSIDE USER*
- Extended reach arm
- Bedside touchscreen for step-by-step instructions

INCREASED PROCEDURAL CONTROL FOR PHYSICIAN*
- Active Guide Catheter Management
- 40” Power Vision Monitor

* Compared to the CorPath 200 System
Building Robust Robotic Programs
Driving strategic growth

Commercial Focus on Developing New Programs and Growing Adoption

- Team Approach
 - Physicians, techs, nurses and administration

- Commitment to Building a Program
 - Buy in from all stakeholders

- Ongoing Training
 - Basic, intermediate and advanced

- Adequate Procedural Volume
 - Support multiple users
Addressing Healthcare Challenges

Overdue paradigm shift into the digital age

- Safer Work Environment
- Reduce Cost
- Expand Access To Care
- Improve Efficiency
- Enhance Quality
Future of Cardiovascular Robotics

The only platform for advanced capabilities

Planned features aimed at improving workflow, expanding access, and reducing variability of care.

Advanced Device Manipulation
Expanded compatibility, precise actuation, multiple device control, quick exchange.

Robotic-Assisted Procedures
Automated wire techniques scaled to full auto-navigation of wires and catheters.

Remote Capabilities
Tele-treatment capabilities spanning from remote case proctoring to remote catheterization.

Prescriptive Analytics
Algorithms to guide peri-procedure lesion assessment, treatment plan, and device selection.
Technology Enablers

Third-party technologies that compliment robotics

- **Advanced Imaging**
 - 3D Image Reconstruction
 - CT Fractional Flow Reserve (FFR)
 - Angiographic FFR

- **Data Integration**
 - Machine Learnings
 - Descriptive and Prescriptive Data
 - Algorithms

- **Autonomous**
 - Sensors
 - Mapping
 - Closed Loop Movement

- **Communication**
 - Advancement of 5G
 - Security Solutions
 - Latency Solutions
 - No Geographic Boundaries
Remote PCI Study explored feasibility of remote telestenting using a robotic system

- Single-center prospective observational study performed at Spectrum Health, Grand Rapids, MI
- 20 patients treated via physician at remote cockpit leveraging telehealth technology
- Study showed 86.4% technical success and 95% procedural success
Vascular Robotic Clinical Roadmap
Demonstrating excellence in multiple lesion types and anatomies

Expand Use
- Left Main Intervention
- Complex PCI & CTO
- Ostial Lesion
- Bioabsorbable Stents
- Staff Radiation Protection
- Outcomes
- Remote PCI

Feasibility
- Below the Knee
- Ostial Stenting
- Atherectomy
- Drug Eluting Balloons

Exploratory
- NEURO
- STRUCTURAL
- Exploratory Work

CorPath 200 and CorPath GRX Systems are indicated for PCI. Only the CorPath 200 System is indicated for use in peripheral vascular interventions. CorPath Systems are not indicated for use in neuro or structural interventions.
Corindus Vascular Robotics

Strategic Objectives

Near Term

- Establish at least 25 new robotic programs
- Pursue co-development opportunities, add at least one additional collaboration
- Drive system utilization
- Prepare Japan distributor for launch
- Ramp up educational and training opportunities for physicians
- Further clinical trial development
- Software enhancement – Gen 2.2

Mid to Long Term

- Recurring revenue streams and NG3 system launch
- Expansion into additional disease states (neurovascular and structural heart)
- Global expansion and remote tele-proctoring, with specific focus on China
Financial Snapshot

Key Financial Metrics

| Cash and Cash Equivalents\(^1\) | $45.2 million |
| Debt\(^{1,2}\) | $2.4 million |

Guidance

<table>
<thead>
<tr>
<th>Year</th>
<th>Robotic Programs</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Establish at least 25 new cardiovascular robotic programs</td>
<td>$13 - $15 million(^3)</td>
</tr>
</tbody>
</table>

\(^1\) As of March 31, 2017
\(^2\) Outstanding principal balance
\(^3\) Per our earnings release dated May 9, 2017
About Corindus Vascular Robotics

Corindus Vascular Robotics, Inc. is a global technology leader in robotic-assisted vascular interventions. The company's CorPath® System is the first FDA-cleared medical device to bring robotic-assisted precision to percutaneous coronary interventions. With the CorPath System, Corindus Vascular Robotics brings robotic precision to interventional procedures to help optimize clinical outcomes and minimize the costs associated with complications of improper stent placement with manual procedures.

Visit us at www.corindus.com