Forward Looking Statements

This presentation contains “forward-looking statements” (as such term is defined in Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended), and information relating to the company, that are based on the current beliefs of, and assumptions made by our management and the information currently available to our management. Forward-looking statements relate to expectations concerning matters that are not historical facts. Words such as "anticipate," "believe," "estimate," "expect," "intend," "plan," "predict," "opinion," "will" and similar expressions and their variants, are intended to identify forward-looking statements. These forward-looking statements include, but are not limited to statements related to our expected business, products, adoption of robotic medical procedures, results of operations, future financial condition, ability to increase our revenues, and similar matters. These forward-looking statements should be considered in light of various important factors, including, without limitation, the rate of adoption of our CorPath system and the rate of use of our cassettes; risks associated with market acceptance, including pricing and reimbursement; our ability to enforce our intellectual property rights; our need for additional funds to support our operations; our ability to manage expenses and cash flow; factors relating to engineering, regulatory, manufacturing, sales and customer service challenges; potential safety and regulatory issues that could slow or suspend our sales; the effect of credit, financial and economic conditions on capital spending by our potential customers; the impact of global and regional economic and credit market conditions on health care spending; health care reform legislation in the United States and its impact on hospital spending, reimbursement and fees which will be levied on certain medical device revenues, decreases in hospital admissions and actions by payers to limit or manage surgical procedures timing and success of product development and market acceptance of developed products, procedure counts; regulatory approvals, clearances and restrictions; guidelines and recommendations in the health care and patient communities, intellectual property positions and litigation, competition in the medical device industry and in the specific markets of surgery in which we operate, the inability to meet demand for products, the results of legal proceedings to which we are or may become a party, product liability and other litigation claims, adverse publicity regarding our company and safety of our products and the adequacy of training; our ability to expand in foreign markets; and other risk factors. Readers are cautioned not to place undue reliance on these forward-looking statements, which are based on current expectation and are subject to risks, uncertainties; and assumptions that are difficult to predict, including those risk factors described in the company’s annual report on form 10-K for the fiscal year ended on December 31, 2016. Our actual results may differ materially and adversely from those expressed in any forward-looking statements. We undertake no obligation to publicly update or release any revisions to these forward-looking statements except as required by law.
LARGE Market Opportunity with Long GROWTH Runway
$4.5B\(^1\) market opportunity in 2018 driven by over 2.5 million coronary and 3 million non-coronary procedures performed per year

DIFFERENTIATED Technology
ONLY FDA cleared robotic platform for percutaneous coronary intervention (“PCI”) and peripheral vascular interventions (“PVI”) procedures

Proving BENEFIT to Patient, Physician, and Hospital
Robotic precision reduces stent utilization to improve clinical outcomes\(^2,3\)
Reducing radiation exposure for patients, physicians & lab staff\(^4\)

Leading INNOVATION in Vascular Robotics
Strong product development pipeline backed by robust IP portfolio
Open architecture leverages hospital ecosystem & enables partnerships

GROWING Revenues
Expected Q4 2017 revenue between $4.0 million and $4.2 million and 2017 revenue between $9.5 million and $9.7 million.\(^5\)

Market opportunity assessment based on market research reports and Corindus estimate

Peripheral Vascular includes lower limb, carotid, renal, iliac and AAA (abdominal aortic aneurysm) procedures

Millennium Research Group

Interventional Market Opportunity

Large & growing worldwide market

- $4.5B FY2018 market estimate
- Non-PCI procedure types: Peripheral Vascular, Neurointerventional and Structural Heart
- 2018 estimated PCI procedure volume:
 - 933,000 in the US
 - 1,800,000 OUS
- 2018 estimated non-PCI procedure volume:
 - 1,200,000 in the US
 - 1,800,000 OUS

1. Market opportunity assessment based on market research reports and Corindus estimate
2. Peripheral Vascular includes lower limb, carotid, renal, iliac and AAA (abdominal aortic aneurysm) procedures
3. Millennium Research Group
Company Milestones

Next Generation
CorPath GRX cleared by FDA with Guide Catheter Control and Enhanced User Interface

Adoption
CorPath GRX seeing high utilization in cath labs & 2x increase in adoption with existing customers

Global
Signed Distribution Agreement with 2nd largest company in Japan (Mitsubishi)

Commercial Momentum
Installations at leading centers including Houston Methodist & William Beaumont

Building Partnerships
Co-sponsoring course series with Medtronic and leading hospitals on transradial access techniques and robotic-assisted vascular interventions
Robotics in the Cath Lab
Second Generation Robotic-assisted PCI & PVI System

CorPath® GRX System

BEDSIDE UNIT
- Optimized bedside unit for radial access
- Simple setup & in-procedure workflow
- Devices fixed during intervention
- Imaging and device agnostic

INTERVENTIONAL COCKPIT
- Precise robotic control of
 - Guide catheter
 - Guidewire
 - Balloon/stent catheter
- Radiation-shielded workstation
- 4K resolution monitor enhances visualization of patient anatomy
Traditional PCI vs Robotic PCI
Redefining intervention

Today’s Cath Lab Environment
- High radiation exposure
- Significant fatigue and orthopedic strain

Manual PCI

<table>
<thead>
<tr>
<th>PCI STEPS</th>
<th>Robotic-assisted PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Struggle to see angiography</td>
<td>Close proximity ergonomic visualization</td>
</tr>
<tr>
<td>Trial & error, wire spinning</td>
<td>Precise ‘Point & Shoot’ predictability</td>
</tr>
<tr>
<td>‘Eyeball’ estimate</td>
<td>Robotic-assisted sub-mm Measurement</td>
</tr>
<tr>
<td>Manual adjustment</td>
<td>1mm precise positioning</td>
</tr>
<tr>
<td>Devices loose during inflation</td>
<td>Fixated devices during deployment</td>
</tr>
</tbody>
</table>

Robotics
- Shields from radiation
- Potential to reduce fatigue and orthopedic strain
Why Vascular Robotics

Benefits for patients, physicians, & hospitals

<table>
<thead>
<tr>
<th>PATIENT BENEFIT</th>
<th>PROTECTION</th>
<th>FUTURE</th>
<th>DIFFERENTIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Robotic precision reduces stent utilization by 8.3%<sup>1</sup></td>
<td>• 95% reduction in radiation exposure to physician<sup>3</sup></td>
<td>• Significant growth in robotic research and publications</td>
<td>• Position hospital on the cutting edge by deploying robotics as part of a hi-tech cardiology model</td>
</tr>
<tr>
<td>• 17% reduction in radiation exposure to patient<sup>2</sup></td>
<td>• Sit comfortably without the need for lead</td>
<td>• Relevancy</td>
<td>• Clinical leadership</td>
</tr>
<tr>
<td>• May facilitate increased radial adoption, which is shown to improve clinical outcomes</td>
<td>• 15% reduction in radiation exposure to bedside staff<sup>4</sup></td>
<td>• Involvement in tech development and medical education</td>
<td>• Attract & retain physicians</td>
</tr>
</tbody>
</table>

Evolution of Interventional Treatment
Hi-tech cardiology model with robotics

Traditional PCI

Clinical Outcomes
Good success rates
Increasingly complex cases

Occupational Hazards
High risk working environment
Physician burnout

Stagnant Market
Competition for market share
Radial adoption slow

Current Robotic Capabilities

Precise Treatment
Precise robotic movement
Enhanced visualization
Multi-device control

Safety & Wellness
Physician safety & comfort
Staff safety & skill development
Patient safety

Differentiation
Enable radial adoption
Robotic program marketing

Future Robotic Capabilities

Improved Capabilities
Lesion assessment
Lesion preparation
Expanded device compatibility

Access to Care
Teleproctoring
Telestenting

Improved Efficiency
Integrated decision making tools
Procedural automation
Prescriptive analytics

Clinical Outcomes
Good success rates
Increasingly complex cases

Occupational Hazards
High risk working environment
Physician burnout

Stagnant Market
Competition for market share
Radial adoption slow
Core remote vascular procedure patent issued globally

- The only company allowed to control two (or more) co-axial devices, as required for PCI and most vascular procedures

“Ring-fencing” all vascular robotic applications

- 62 issued global patents*
- 56 patents pending: broad application coverage*
- Continuously building IP portfolio
- Pursuing the entire vascular space

* As of 10-K dated March 15, 2017
Vascular Robotic Clinical Roadmap
Demonstrating excellence in multiple lesion types and anatomies

Expand Use
- Left Main Intervention
- Complex PCI & CTO
- Ostial Lesion
- Staff Radiation Protection
- Outcomes
- Remote PCI

Feasibility
- Below the Knee
- Ostial Stenting
- Atherectomy
- Drug Eluting Balloons

Exploratory
- Exploratory Work

PERIPHERAL

NEURO

CorPath 200 and CorPath GRX Systems are indicated for PCI. Only the CorPath 200 System is indicated for use in peripheral vascular interventions. CorPath Systems are not indicated for use in neuro or structural interventions.
Catalysts & Strategic Objectives

FOUNDATION: THREE PILLARS OF GROWTH

- Technology Development
- Market Expansion
- Global Adoption

- **Expanding Indications**
 - Peripheral
 - Neuro/Stroke

- **Software Enhancements**
 - 1st Automated Movement

- **Japan Commercial Launch**

- **Expanding Capabilities**
 - Additional Automated Movements

- **China Planned Expansion**

- **Remote Capabilities**
 - Telestenting

- **Expanding Indications**
 - Neuro/Stroke

Timeline

- **Feb 2018:** Received 510(k) clearance for CorPath® GRX System in PVI
- **March 2018:** Received 510(k) clearance for the first automated robotic movement

Yearly Periods

- **2018**
- **2019-2020**
- **2021-2023**
Preliminary and unaudited revenue projections as of January 23, 2018; 2 Includes a mix of new system installations and CorPath 200 system upgrades.

Sites that upgraded from a CorPath 200 to a CorPath GRX have, on average, nearly doubled the percentage of PCI procedures performed robotically.

Cash balance of approximately $26.2 million as of September 30, 2017.

1 Preliminary and unaudited revenue projections as of January 23, 2018; 2 Includes a mix of new system installations and CorPath 200 system upgrades.
Clinical Leadership
Advancing vascular robotics

CMO
J. Aaron Grantham, MD
Saint Luke's Hospital of Kansas City

Executive Advisor
Marty Leon, MD
NewYork-Presbyterian Hospital

Board of Directors
Louis Cannon, MD
BioStar Ventures

Campbell Rogers, MD
HeartFlow

Steering Committee

Steven Almany, MD
Beaumont Hospital

David Kandzari, MD
Piedmont Heart

Bill Lombardi, MD
University of Washington

Ryan Madder, MD
Spectrum Health

Giora Weisz, MD
Montefiore Medical Center
Board of Directors

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeffrey C. Lightcap</td>
<td>Chairman</td>
<td>HealthCor</td>
</tr>
<tr>
<td>Mark J. Toland</td>
<td>Director</td>
<td>Corindus, Boston Scientific</td>
</tr>
<tr>
<td>Jeffrey G. Gold</td>
<td>Director</td>
<td>Myoscience, Velomedix</td>
</tr>
<tr>
<td>Campbell Rodgers, MD</td>
<td>Director</td>
<td>Heartflow, J&J</td>
</tr>
<tr>
<td>Louis A. Cannon, MD</td>
<td>Director</td>
<td>KOL, Interventional Cardiologist</td>
</tr>
<tr>
<td>Nathan R. Harrington</td>
<td>Director</td>
<td>Philips, Boston Scientific</td>
</tr>
<tr>
<td>James R. Tobin</td>
<td>Director</td>
<td>Boston Scientific</td>
</tr>
</tbody>
</table>
Corindus Vascular Robotics, Inc. is a global technology leader in robotic-assisted vascular interventions. The company's CorPath® System is the first FDA-cleared medical device to bring robotic-assisted precision to percutaneous coronary interventions. With the CorPath System, Corindus Vascular Robotics brings robotic precision to interventional procedures to help optimize clinical outcomes and minimize the costs associated with complications of improper stent placement with manual procedures.

Visit us at www.corindus.com