VOLCANOGENIC MASSIVE SULPHIDE DEPOSITS
ALAN G. GALLEY1, MARK D. HANNINGTON2, AND IAN R. JONASSON1
1. Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8
2. Department of Earth Sciences, University of Ottawa, Marion Hall, 140 Louis Pasteur,Ottawa, Ontario K1N 6N5 Corresponding author’s email: agalley@nrcan.gc.ca

Abstract
Volcanogenic massive sulphide (VMS) deposits, also known as volcanic-associated, volcanic-hosted, and volcano- sedimentary-hosted massive sulphide deposits, are major sources of Zn, Cu, Pb, Ag, and Au, and significant sources for Co, Sn, Se, Mn, Cd, In, Bi, Te, Ga, and Ge. They typically occur as lenses of polymetallic massive sulphide that form at or near the seafloor in submarine volcanic environments, and are classified according to base metal content, gold con- tent, or host-rock lithology. There are close to 350 known VMS deposits in Canada and over 800 known worldwide. Historically, they account for 27% of Canada’s Cu production, 49% of its Zn, 20% of its Pb, 40% of its Ag, and 3% of its Au. They are discovered in submarine volcanic terranes that range in age from 3.4 Ga to actively forming deposits in modern seafloor environments. The most common feature among all types of VMS deposits is that they are formed in extensional tectonic settings, including both oceanic seafloor spreading and arc environments. Most ancient VMS deposits that are still preserved in the geological record formed mainly in oceanic and continental nascent-arc, rifted- arc, and back-arc settings. Primitive bimodal mafic volcanic-dominated oceanic rifted arc and bimodal felsic-dominated siliciclastic continental back-arc terranes contain some of the world’s most economically important VMS districts. Most, but not all, significant VMS mining districts are defined by deposit clusters formed within rifts or calderas. Their clustering is further attributed to a common heat source that triggers large-scale subseafloor fluid convection systems. These subvolcanic intrusions may also supply metals to the VMS hydrothermal systems through magmatic devolatiliza- tion. As a result of large-scale fluid flow, VMS mining districts are commonly characterized by extensive semi-con- formable zones of hydrothermal alteration that intensifies into zones of discordant alteration in the immediate footwall and hanging wall of individual deposits. VMS camps can be further characterized by the presence of thin, but areally extensive, units of ferruginous chemical sediment formed from exhalation of fluids and distribution of hydrothermal particulates.
Résumé
Les gîtes de sulfures massifs volcanogènes (SMV) sont connus sous diverses appellations parmi lesquelles on peut mentionner les gîtes de sulfures massifs associés à des roches volcaniques, encaissés dans des roches volcaniques ou logés dans des assemblages volcano-sédimentaires. Ils constituent des sources considérables de Zn, Cu, Pb, Ag et Au, ainsi que des sources importantes de Co, Sn, Se, Mn, Cd, In, Bi, Te, Ga et Ge. Ils consistent généralement en lentilles de sulfures massifs polymétalliques formées dans des milieux volcaniques sous-marins, au sein ou à proximité du fond océanique, et sont classés d’après leur contenu en métaux communs ou en or ou selon la lithologie des roches encais- santes. Près de 350 gîtes SMV ont été découverts au Canada et plus de 800, de par le monde. Dans l’histoire de la pro- duction minière du Canada, 27 % du cuivre, 49 % du zinc, 20 % du plomb, 40 % de l’argent et 3 % de l’or ont été extraits de gisements SMV. On trouve de tels gîtes aussi bien dans des terrains volcaniques sous-marins datant de 3,4 Ga que dans les fonds océaniques actuels où de nouveaux gîtes sont en cours de formation. La caractéristique la plus commune à tous les gîtes de SMV tient à leur formation dans des milieux tectoniques de distension, parmi lesquels on peut mentionner les fonds océaniques en expansion et les arcs. La plupart des anciens gîtes SMV conservés dans les archives géologiques se sont formés dans des milieux océaniques et continentaux d’arc naissant, d’arc de divergence  et d’arrière-arc. Quelques-uns des districts à gisements SMV les plus importants dans le monde sur le plan économique se trouvent dans des terrains océaniques primitifs d’arc de divergence caractérisés par un volcanisme bimodal à domi- nante mafique, de même que dans des terrains continentaux d’arrière arc caractérisés par un volcanisme bimodal à dom- inante felsique et la présence de matériaux silicoclastiques. La plupart des principaux districts miniers à gisements SMV consistent en amas de gisements formés dans des rifts ou des caldeiras. Leur regroupement est attribuable à l’existence d’une source de chaleur commune qui donne naissance à de vastes réseaux de convection de fluides sous le plancher océanique. Les intrusions subvolcaniques qui produisent cette chaleur peuvent aussi fournir des métaux aux réseaux hydrothermaux des gîtes SMV par le biais d’un dégagement magmatique de matières volatiles. En raison de l’écoule- ment de fluides sur une grande étendue, les districts miniers à gisements SMV se caractérisent souvent par la présence de vastes zones semi-concordantes d’altération hydrothermale, qui gagnent en intensité pour devenir des zones d’altéra- tion discordantes, dans l’éponte inférieure et l’éponte supérieure immédiates des gisements. Ces districts se distinguent aussi par la présence d’unités minces mais étendues de sédiments chimiques ferrugineux qui résultent de l’exhalaison et de la diffusion de particules hydrothermales.

Definition
Volcanogenic massive sulphide (VMS) deposits are also known as volcanic-associated, volcanic-hosted, and vol- cano-sedimentary-hosted massive sulphide deposits. They typically occur as lenses of polymetallic massive sulphide that form at or near the seafloor in submarine volcanic envi- ronments. They form from metal-enriched fluids associated

with seafloor hydrothermal convection. Their immediate host rocks can be either volcanic or sedimentary. VMS deposits are major sources of Zn, Cu, Pb, Ag, and Au, and significant sources for Co, Sn, Se, Mn, Cd, In, Bi, Te, Ga, and Ge. Some also contain significant amounts of As, Sb, and Hg. Historically, they account for 27% of Canada’s Cu production, 49% of its Zn, 20% of its Pb, 40% of its Ag, and
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3% of its Au. Because of their poly- metallic content, VMS deposits continue to be one of the most desirable deposit types for security against fluctuating prices of differ- ent metals.
VMS deposits form at, or near, the seafloor through the focused discharge of hot, metal-rich hydrothermal fluids. For this rea- son, VMS deposits are classified under the general heading of “exhalative” deposits, which includes sedimentary exhalative (SEDEX) and sedimentary nickel deposits (Eckstrand et al., 1995). Most VMS deposits have two com- ponents (Fig. 1). There is typically a mound-shaped to tabular, stratabound body composed princi- pally of massive (>40%) sulphide, quartz and subordinate phyllosili- cates, and iron oxide minerals and altered silicate wall-rock. These stratabound bodies are typically underlain by discordant to semi- concordant stockwork veins and
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FIGURE 1. Schematic diagram of the modern TAG sulphide deposit on the Mid-Atlantic Ridge. This repre- sents a classic cross-section of a VMS deposit, with concordant semi-massive to massive sulphide lens under- lain by a discordant stockwork vein system and associated alteration halo, or “pipe”. From Hannington et al. (1998).
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VMS deposits are grouped according to base metal content, gold content, and host-rock lithol- ogy (Figs. 2, 3, 4). The base metal classification used by Franklin et al. (1981) and refined by Large (1992) and Franklin et al. (2005) is
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perhaps the most common. VMS deposits are divided into Cu-Zn, Zn-Cu, and Zn-Pb-Cu groups according to their contained ratios of these three metals (Fig. 2). The Cu-Zn and Zn-Cu categories for Canadian deposits were further refined by Morton and Franklin
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(1987) into Noranda and Mattabi types, respectively, by including the character of their host rocks (mafic vs. felsic, effusive vs. vol- caniclastic) and characteristic alter- ation mineral assemblages (chlo-
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quartz ± carbonate-rich). The Zn- Pb-Cu category was added by Large (1992) in order to more fully represent the VMS deposits of Australia (Fig. 2). Poulsen and Hannington (1995) created a sim-
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FIGURE 2. Base metal classification scheme of worldwide and Canadian VMS deposits as defined by Franklin et al. (1981) and modified by Large (1992) to include the Zn-Pb-Cu class. The preponderance of Cu-Zn and Zn-Cu VMS deposits in Canada is due to the abundance of Precambrian primitive oceanic arc settings. Worldwide, there is a larger proportion of felsic-hosted, more Pb-rich continental rift and continent margin arc settings.

ple bimodal definition of “normal” versus “Au-rich” VMS deposits (Fig. 3). This originally was intended to identify deposits that are transitional between VMS and epithermal deposits (e.g. Sillitoe et al., 1996) (Fig. 4). Further research has indicated a more complex spectrum of conditions for the generation of Au-rich VMS related to water depth, oxidation state, the temperature of the metal-depositing fluids, and possible magmatic contributions (e.g. Hannington et al., 1999a). In the classification of Poulsen and Hannington (1995) Au-rich VMS deposits are arbitrarily defined as those in which the abundance of Au in ppm is numerically greater than the combined base metals (Zn+Cu+Pb in wt.%, Fig. 3). A third classification system that is gaining acceptance is a five-fold grouping first suggested by Barrie and Hannington (1999), and later modified by Franklin et al. (2005). This
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system classifies VMS deposits by their host lithologies (Fig. 4), which includes all strata within a host succession
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defining a distinctive time-stratigraphic event (Franklin et
al., 2005). These five different groups are bimodal-mafic, mafic-backarc, pelitic-mafic, bimodal-felsic, and felsic-sili- ciclastic. To this is added a sixth group of hybrid bimodal felsic, which represent a cross between VMS and shallow- water epithermal mineralization (Fig. 4). These lithologic groupings generally correlate with different submarine tec- tonic settings. There order here reflects a change from the most primitive VMS environments, represented by ophiolite settings, through oceanic rifted arc, evolved rifted arcs, con- tinental back-arc to sedimented back-arc.
Geographical Distribution
There are close to 850 known VMS deposits worldwide with geological reserves of over 200,000 t. They are located in submarine volcanic terranes that range in age from the 3.4 Ga Archean Pilbara Block, Australia, to actively forming deposits in modern seafloor spreading and oceanic arc ter- ranes (Fig. 5, Table 1). VMS-epithermal hybrids are also forming today in volcanically active shallow submarine (Manus Basin) and lacustrine environments. VMS deposits are recognized on every major continent except Antarctica, although Zn-Pb-Cu deposits are forming in the Bransfield Strait adjacent to the Antarctic Peninsula (Peterson et al., 2004). Cu and Au have been produced from Tertiary-age deposits hosted in ophiolites around the eastern Mediterranean and Oman for over 5000 years. Prior to 2002, VMS deposits are estimated to have supplied over 5 billion tonnes of sulphide ore (Franklin and Hannington, 2002). This includes at least 22% of the world’s Zn production, 6% of the world’s Cu, 9.7% of the world’s Pb, 8.7% of its Ag, and 2.2% of its Au (Singer, 1995).
Over 350 deposits and major VMS occurrences contain- ing geological reserves of more than 200,000 tonnes are known in Canada, of which only 13 are producing mines as of 2006 (Fig. 6, Table 2). Of these, Louvicourt, Bouchard- Hébert, Selbaie, and Konuto have been closed. VMS deposits are known to occur in every province and territory except Alberta and Prince Edward Island. The largest num- ber of deposits is in Quebec (33%), followed in descending order by Manitoba (15%), Newfoundland (12%), British Columbia (10%), Ontario (9%), and New Brunswick (9%). The deposits in New Brunswick have had the highest aggre-

FIGURE 3. Classification of VMS deposits based on their relative base metal
(Cu+Zn+Pb) versus precious metal (Au, Ag) contents. Some of Canada’s better known auriferous deposits (underlined) are compared to international examples. Despite having produced 170 t of Au, the Flin Flon deposit is not considered an auriferous VMS deposit under this classification. Modified from Hannington et al. (1999c).

gate metal value (Cu+Zn+Pb), followed by Quebec and then Ontario (Fig. 7).
Grade and Tonnage
The over 800 VMS deposits worldwide range in size from 200,000 tonnes to supergiant deposits containing more than 150 million tonnes (Franklin et al., 2005) (Table 3). Among the largest is Rio Tino, Spain’s portion of the Iberian Pyrite Belt (IPB), with contained ore in excess of 1.535 Bt. The richest supergiant produced to date is Neves Corvo on the Portuguese side of the IPB, with ore in excess of 270 Mt, with 8.8 Mt of contained metal. At the average metal prices to date for 2006 (Cu=$1.75/lb, Zn=$1.25/lb, Ag=$6.00/oz), this orebody was originally worth in the order of 26 billion dollars (US). Other large districts are the Urals and Rudny Altai of Russia and Kazakhstan with over 70 Mt of contained metals each (Fig. 5). Canada has two supergiant VMS deposits (Windy Craggy and Brunswick No. 12) and two giant VMS deposits (Kidd Creek, and Horne), which are defined as being in the upper 1% of the world’s VMS deposits with respect to total original reserves (Fig. 10A). In Canada, the largest VMS mining district is Bathurst, New Brunswick, which contained over 320 Mt of geological resource of massive sulphide containing 30 Mt of combined Zn, Cu, and Pb (Figs. 6, 10A). The 128 Mt Brunswick No. 12 deposit alone contained 16.4 Mt of metal (Table 2). This is followed by the 138.7 Mt Kidd Creek deposit containing
12.6 Mt of metal. The largest known Canadian VMS deposit
is the 297 Mt Windy Craggy deposit, but it contains only 4.1 Mt of Cu, Co, and Au. The 50 Mt Horne deposit contains 2.2 Mt of Zn+Cu+Pb, along with over 330 t of Au, making it also a world-class gold deposit (Fig. 10B). The 98 Mt LaRonde VMS deposit contains 258 Mt of gold, and because of its high Au/base metal ratio (Au ppm/Zn+Cu+Pb% = 1.9) it is classified by its owner as a gold deposit rather than a VMS deposit.
Determining the mean and median metal concentrations for Canadian VMS deposits is difficult due to missing or
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 4. 
Graphic representation of the lithological classifications modified from Barrie and Hannington (1999) by Franklin et al. (2005), with the addition of the hybrid bimodal felsic as a VMS-epithermal subtype of bimodal-felsic. Average and median sizes for each type for representative Canadian deposits shown, along with average grade.
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)incomplete data for a large number of deposits. Pb grades are known for 34% of Canadian deposits, whereas 55% have known Au grades and 75% have known Ag grades. From the available production data, the mean and median (in brackets) size and grades for past and present producing Canadian deposits are 7 306 521 t grading 4.88% (4.12) Zn, 1.62%
(0.70) Cu, 1.639% (1.00) Pb, 63 g/t (37) Ag, and 1.65 g/t
(0.88) Au. Figure 9B shows the more meaningful breakdown of tonnage and grade for each of the five Canadian VMS types as defined by host lithology. Bimodal mafic deposits account for the greatest number and, therefore, the largest aggregate tonnage of the five deposit types, with both silici- clastic types accounting for the largest average tonnage. The

mafic-siliciclastic deposit types have the highest average tonnage, with the number highly skewed by Windy Craggy. As expected, the three deposit types dominated by mafic vol- canic and volcaniclastic rocks have the highest Cu grades, whereas the two felsic-dominated deposit types contain the highest Pb and Ag contents. The bimodal felsic deposit group contains the highest average gold. Mafic-ultramafic- dominated systems can also contain Se, Co, and Ni. The presence of immature sediments (i.e. black shale) within the footwall stratigraphy can also influence hydrothermal fluid composition, as is postulated for he Se-rich Wolverine and KZK deposits in the Finlayson Lake camp (Bradshaw et al., 2003). Possible contributions from devolatilizing subvol-
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)canic intrusions may also account for anomalous Se, Sn, In, Bi, Te, and possibly Au and Sb contents (Hannington et al., 1999c; Yang and Scott, 2003; Dubé et al., 2004).
Geological Attributes
Tectonic Environment
The most common feature among all types of VMS deposits is that they are formed in extensional tectonic set- tings, including both oceanic seafloor spreading and arc environments (Fig. 11). Modern seafloor VMS deposits are recognized in both oceanic spreading ridge and arc environ- ments (Herzig and Hannington, 1995), but deposits that are

preserved in the geological record formed mainly in oceanic and continental nascent-arc, rifted arc, and back-arc settings (Franklin et al. 1998; Allen et al., 2002) (Fig. 11). This is because during subduction-driven tectonic activity much of the ancient ocean-floor is subducted, leaving only a few ophiolite suites as remnant obducted ocean-floor. Examples of these include the Ordovician Bay of Islands ophiolite in Newfoundland and the Late Triassic Cache Creek terrane in British Columbia (Bédard and Hébert, 1996; Nelson and Mihalynuk, 2004).
Nascent, or early arc rifting, results from the initial foundering of older thickened oceanic crust, commonly

TABLE 1. Major world volcanogenic massive sulphide deposits and districts.
	No.*
	Deposit/District, Country
	Tonnage (Mt)
	No.*
	Deposit/District, Country
	Tonnage (Mt)

	1
	Brooks Range, Alaska
	35
	23
	Skellefte, Sweden
	70

	2
	Finlayson Lake, Yukon
	20
	24
	Outokumpu-Pyhasalmi, Finland
	90

	3
	Windy Craggy, BC & Green's Creek, Alaska
	300
	25
	Bergslagen-Orijarvi, Sweden & Finland
	110

	4
	Northern Cordillera, British Columbia
	100
	26
	Preiska, South Africa
	45

	5
	Myra Falls, British Columbia
	35
	27
	Troodos, Cyprus
	35

	6
	Shasta, California
	35
	28
	Black Sea, Turkey
	200

	7
	Jerome, Arizona
	40
	29
	Saudi Arabia
	70

	8
	Central Mexico
	120
	30
	Semail, Oman
	30

	9
	Tambo Grande, Peru
	200
	31
	Southern Urals, Russia / Kazahkstan
	400

	10
	Amazonian craton, Brazil
	35
	32
	Central Urals, Russia
	100

	11
	Slave Province, Northwest Territories, Nunavut
	30
	33
	Rudny Altai, Kazahkstan / Russia
	400

	12
	Ruttan, Manitoba
	85
	34
	Altai Shan, Mongolia
	40

	13
	Flin Flon-Snow Lake, Manitoba
	150
	35
	North Qilian, China
	100

	14
	Geco, Manitouwadge, Ontario
	60
	36
	Sanjiang, China
	50

	15
	Sturgeon Lake, Ontario
	35
	37
	Bawdwin-Laochang, Burma /
	40

	16
	Ladysmith-Rhinelander, Wisconsin/Michigan
	80
	38
	Hokuroku, Japan
	80

	17
	Abitibi, Ontario-Quebec
	600
	39
	Besshi, Japan
	230

	18
	Bathurst, New Brunswick
	495
	40
	Phillipines arc
	65

	19
	Dunnage Zone, Newfoundland
	75
	41-42
	Pilbara, Yilgarn Western Australia
	75

	20
	Iberian Pyrite Belt, Spain & Portugal
	1575
	43
	Central Queensland, Australia
	80

	21
	Avoca, Ireland
	37
	44
	Lachlan Fold Belt, Australia
	100

	22
	Trondhjeim, Norway
	100
	45
	Mt. Read, Tasmania
	200

	
	
	
	46
	Sino-Korean Platform
	40


* numbers refer to Figure 5; tonnage is approximate
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TABLE 2. Canadian volanogenic massive sulphide deposits presently in production (2005).
	Deposit
	Location
	(1) Mt
	Cu
	Zn
	Pb
	Ag
	Au
	Age

	
	
	
	wt.%
	wt.%
	wt.%
	g/t
	g/t
	

	Brunswick No. 12
	Bathurst, New Bruswick
	229.8
	0.46
	7.66
	3.01
	91
	0.46
	Ordovician

	Kidd Creek
	Abitibi, Ontario
	149.3
(181 mined + all resources)
	2.89
	6.36
	0.22
	92
	0.05
	Archean

	LaRonde (incl. LaRonde II)
	Abitibi, Quebec
	88.1
	0.32
	1.71
	
	40.9
	5.07
	Archean

	Selbaie
	Abitibi, Quebec
	47.3
	0.98
	1.98
	
	20
	0.9
	Archean

	Myra Falls Gp.,Buttle Lake
	Wrangellia, British Columbia
	29.3
	1.83
	6.25
	0.55
	49
	2.01
	Devonian

	Trout Lake
	Trans-Hudson Orogen, Manitoba
	20
	1.83
	5.59
	
	17.4
	1.73
	Paleoproterozic

	Louvicourt
	Abitibi, Quebec
	19.3
	3.1
	1.71
	
	28.7
	0.83
	Archean

	Triple 7
	Trans-Hudson Orogen, Manitoba
	14.5
	3.32
	5.78
	
	37.7
	2.71
	Paleoproterozic

	Bouchard-Hébert
	Abitibi, Quebec
	10.2
	2.11
	4.79
	
	15
	1.4
	Archean

	Callinan
	Trans-Hudson Orogen, Manitoba
	9.16
	1.41
	3.59
	
	23.5
	2.08
	Paleoproterozic

	Duck Pond*
	Central Volcanic Belt,
	5.2
	3.24
	5.97
	1.1
	61.5
	0.88
	Ordovician

	Perseverence Group *
	Abitibi , Quebec
	5.1
	1.24
	15.82
	
	29.4
	0.38
	Archean

	Eskay Creek
	Stikine, British Columbia
	4
	0.33
	5.4
	2.2
	998
	26.4
	Jurassic

	Bell Allard
	Abitibi, Quebec
	3.2
	1.5
	13.77
	
	43.5
	0.76
	Archean

	Chisel North
	Trans-Hudson Orogen, Manitoba
	2.8
	0.15
	9.36
	0.4
	22
	0.4
	Paleoproterozic

	Konuto
	Trans-Hudson Orogen,
	1.28
	5.27
	1.44
	
	10.6
	2.09
	Paleoproterozoic


* In preproduction ( 2006)
(1) Includes production and estimated reserves where applicable.
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IGURE
 7. 
Histogram of the total tonnage of base metals from known VMS deposits per province; also shown are the number of deposits. The aggre- gate tonnage was calculated by total metals represent divided by geological reserves (proven, possible, and probable; non 43-101 compliant).
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along transform fault sutures (Bloomer et al., 1995). These early suprasubduction terranes are most commonly observed in the ancient rock record at the base of oceanic arc assem- blages in which VMS deposits are spatially associated with isolated extrusive rhyolite complexes near the top of thick basalt and basaltic andesite successions. The best Canadian example of these bimodal mafic-dominated caldera settings is the Paleoproterozoic host succession to the Anderson, Stall, and Rod VMS deposits in the Snow Lake camp, Manitoba (Bailes and Galley, 1999). The komatiite-basalt- rhyolite setting for the Archean Kidd Creek deposit is inter-
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preted to be an early primitive arc setting possibly linked to an underlying mantle plume (Wyman et al., 1999), or a rare example of a non-arc VMS setting associated with partial lithospheric melting above a mantle plume (cf. Iceland).
In the idealized evolutionary stages of arc terrane forma- tion, extension of the principal arc assemblage is another common period of VMS formation (Fig. 11). This results in
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FIGURE 8. Global (proven, possible, and probable; non 43-101 compliant) size distribution for VMS deposits, with deposits over 50 Mt considered “very large” (Table 1), those over 100 Mt considered “giant”, and those over 150 Mt defined as “supergiant”. Atlantis II Deep, Red Sea, is consid- ered the largest modern example of a seafloor massive sulphide deposit. Best known examples of Canadian very large, giant, and supergiant deposits are shown. Modified from Hannington et al. (1995).

FIGURE 9. Statistics for VMS deposits grouped by lithologic class (Barrie
and Hannington, 1999): (A) worldwide deposits; (B) Canadian deposits.

the formation of calderas in which bimodal mafic extrusive successions predominate. This is perhaps the most common arc environment for VMS formation in oceanic arc settings. Bimodal mafic-dominated VMS-hosting calderas include the Archean Noranda and the Paleoproterozoic Flin Flon mining camps (Gibson and Watkinson, 1990; Syme and Bailes, 1993). Rifting of continental margin arcs, in contrast, results in the development of more volcaniclastic-rich bimodal felsic extensional settings. Examples include the Sturgeon Lake camp in the Archean Wabigoon terrane of Ontario (Morton et al., 1990; Whalen et al., 2004) and the Devonian Buttle Lake VMS camp in the Wrangellia Terrane of British Columbia (Barrett and Sherlock, 1996a). Outside Canada, the Paleoproterozoic Skellefte mining district in Sweden (Allen et al., 1996a) and the Cambrian Mount Read VMS district in Tasmania (Corbett, 1992) are other examples of rifted continental margin arc settings. Continued exten- sion in both oceanic and continental margin arc settings results in the development of back-arc basins. In oceanic arc settings, mature back-arc ophiolites also can host VMS deposits. Canadian examples include the Paleoproterozoic Birch-Flexar-Coronation camp on the Saskatchewan side of the Flin Flon mining district (Wyman et al., 1999) and Betts Cove, Newfoundland (Swinden et al., 1988; Bédard et al., 1998). Well known examples outside Canada include the Tethyan ophiolites in Cyprus (Troodos), Oman (Semail), and Turkey (Ergani) (Galley and Koski, 1999, and references therein).

TABLE 3. Examples of large-tonnage volcanogenic massive sulphide deposits of the World (Canadian deposits in red).
	NAME
	COUNTRY
	Orogen
	Mtonnes Ore (Geol.)
	CU
%
	PB
%
	ZN
%
	AU
(g/t)
	AG
(g/t)
	Orebody Age
(est. Ma)

	SUPERGIANT
Rio Tinto (Stockwork)
	
Spain
	
Hercynian
	
1200.00
	
0.15
	
	
0.15
	
	
7.00
	
320

	Rio Tinto (Massive)
	Spain
	Hercynian
	335.00
	0.39
	0.12
	0.34
	0.36
	22.00
	320

	Kholodnina
	Russia
	Baikal-Vitim
	300.00
	0.04
	0.79
	5.2
	
	
	750

	Windy Craggy (Cu,Co)
	Canada
	N.Cordilleran
	297.40
	1.38
	
	0.25
	0.22
	3.83
	220

	Neves Corvo Group
	Portugal
	Hercynian
	270.00
	1.59
	0.15
	1.41
	
	9.87
	320

	Gai East
	Russia
	Uralides (Hercynian)
	269.00
	1.2
	
	0.7
	1.10
	7.70
	395

	Aljustrel Group (total)
	Portugal
	Hercynian
	250.00
	1.2
	1.2
	3.2
	1.00
	38.00
	320

	Brunswick #12
	Canada
	Appalachian
	229.80
	0.46
	3.01
	7.66
	0.46
	91.00
	465

	Gai
	Russia
	Uralides (Hercynian)
	205.00
	1.4
	0.06
	0.5
	1.10
	7.90
	395

	La Zarza
	Spain
	Hercynian
	164.00
	1.2
	1.1
	2.5
	1.80
	47.00
	320

	Ducktown
	USA
	Grenvillean? (Oecee)
	163.34
	1
	
	0.9
	0.30
	3.00
	1000

	GIANT
Kidd Creek
	
Canada
	
Abitibi (Kenoran)
	
147.88
	
2.31
	
0.22
	
6.18
	
0.01
	
87.00
	
2714

	Horne - No. 5 Zone
	Canada
	Abitibi (Kenoran)
	144.00
	1
	
	0.9
	1.40
	
	2698

	Ozernoe
	Russia
	Baikal-Vitim
	130.00
	0.01
	1.2
	6.2
	
	
	500

	Ridder-Sokol
	Kazakhstan
	Altaides (Hercynian)
	125.00
	0.3
	2
	4
	2.50
	10.00
	400

	Zyryanov
	Kazakhstan
	Altaides (Hercynian)
	125.00
	0.4
	2.7
	4.5
	0.13
	20.00
	395

	Gacun
	China
	Yidun, Indosinian (Tethyan)
	124.00
	0.72
	4.62
	6.66
	0.46
	157.00
	200

	Masa Valverde
	Spain
	Hercynian
	120.00
	0.5
	0.6
	1.3
	0.80
	38.00
	320

	Sibai
	Russia
	Uralides (Hercynian)
	115.00
	1
	0.04
	1.56
	0.60
	16.00
	392

	Tharsis
	Spain
	Hercynian
	110.00
	0.5
	0.6
	2.7
	0.70
	22.00
	320

	Yubileinoe
	Russia
	Uralides (Hercynian)
	107.00
	1.9
	0.1
	1.2
	2.50
	16.00
	392

	Uchaly
	Russia
	Uralides (Hercynian)
	106.00
	1.1
	
	3.8
	1.10
	15.50
	392

	Madneuli
	Georgia
	Caucasian (Tethyan)
	102.60
	1.29
	
	1.8
	0.73
	4.31
	70

	VERY LARGE
Mount Lyell
	
Australia
	
Tasman
	
98.57
	
1.17
	
0.01
	
0.04
	
0.39
	
7.20
	
495

	Rouez
	France
	Caledonian
	90.74
	0.6
	
	1.5
	1.50
	21.00
	600

	Aznalcollar
	Spain
	Hercynian
	90.00
	0.51
	0.85
	1.8
	0.48
	37.00
	320

	LaRonde (incl.LaRonde-II)
	Canada
	Abitibi (Kenoran)
	88.00
	0.3
	
	1.7
	5.07
	40.90
	2710

	Skorpion
	Namibia
	Gariep
	85.00
	
	0.71
	8.05
	
	
	752

	Podolsk
	Russia
	Uralides (Hercynian)
	84.10
	2.01
	0.13
	1.3
	1.49
	27.60
	392

	Murgul
	Turkey
	Pontides (Tethyan)
	83.14
	0.76
	0.05
	0.03
	0.05
	3.70
	175

	Ruttan
	Canada
	Trans-Hudson
	82.80
	1.37
	0.08
	1.63
	0.49
	13.11
	1900

	Tambo Grande 3
	Peru
	S.Cordilleran
	82.00
	1
	0.3
	1.4
	0.80
	25.00
	104

	San Nicolas
	Mexico
	C.Cordilleran
	79.90
	1.34
	
	2.27
	0.53
	30.00
	136

	Pyhasalmi
	Finland
	Svecokarelian
	75.70
	0.9
	0.06
	1.9
	0.20
	14.00
	1921

	Sotiel
	Spain
	Hercynian
	75.20
	0.56
	1.34
	3.16
	0.21
	24.00
	320

	Los Frailes
	Spain
	Hercynian
	70.00
	0.34
	2.25
	3.92
	
	62.00
	320

	Heath Steele
	Canada
	Appalachian
	69.90
	0.98
	0.89
	2.69
	0.54
	47.00
	465

	Ulaan
	Mongolia
	Kazakh-Mongol(Hercyn.)
	68.00
	
	1.2
	2
	0.21
	53.00
	380

	Caribou
	Canada
	Appalachian
	64.69
	0.51
	1.6
	4.29
	1.89
	51.00
	465

	Crandon
	USA
	Trans-Hudson
	63.50
	1
	
	6.5
	
	
	1870

	Flin Flon
	Canada
	Trans-Hudson
	62.93
	2.2
	
	4.1
	2.85
	43.20
	1875

	Zincgruvan( +Knalla)
	Sweden
	Svecokarelian
	60.00
	
	3.2
	10.4
	
	69.00
	1890

	Tishin
	Kazakhstan
	Altaides (Hercynian)
	60.00
	0.5
	0.9
	5.3
	0.90
	15.00
	395

	Geco
	Canada
	West.Superior (Kenoran)
	58.40
	1.86
	0.15
	3.45
	
	50.06
	2720

	Tambo Grande 1
	Peru
	S.Cordilleran
	56.20
	1.6
	0.3
	1
	0.50
	26.00
	104

	Deerni (Cu-Co)
	China
	Indosinian (Tethyan)
	54.00
	1.23
	
	1.57
	0.42
	4.73
	260

	Horne-H&G Orebodies
	Canada
	Abitibi (Kenoran)
	53.70
	2.2
	
	
	6.10
	13.00
	2700

	Mount Morgan
	Australia
	Tasman
	50.00
	0.7
	0.05
	0.1
	4.70
	0.60
	385

	Outokumpu(Cu,Zn,Co)
	Finland
	Svecokarelian
	50.00
	3.3
	0.005
	1.07
	0.07
	9.00
	1970

	Artem'yev
	Kazakhstan
	Altaides (Hercynian)
	50.00
	1.4
	1.6
	2.2
	1.20
	143.00
	375

	Lousal
	Portugal
	Hercynian
	50.00
	0.7
	0.8
	1.4
	0.70
	21.00
	300

	LARGE
Britannia
	
Canada
	
N.Cordilleran
	
49.31
	
1.08
	
0.033
	
0.26
	
0.34
	
4.03
	
150

	Novo-Leninogorsk
	Kazakhstan
	Altaides (Hercynian)
	48.00
	0.16
	1.43
	4.04
	1.54
	32.80
	395

	Preiska
	South Africa
	Namaqua
	47.00
	1.7
	
	3.8
	0.00
	
	1300

	Anyox-Hidden Creek
	Canada
	N.Cordilleran
	45.95
	1.37
	
	
	0.17
	9.92
	195

	Hanaoka Mine (total)
	Japan
	Japan arcs(Tethyan)
	43.50
	1.2
	1.5
	4.7
	0.40
	68.00
	15

	Aguas Tenidas
	Spain
	Hercynian
	41.00
	1.3
	0.91
	3.1
	0.50
	37.00
	320

	Hongtoushan
	China
	Sino-Korean Platform
	40.00
	1.75
	
	2.4
	0.77
	32.40
	3000

	Maleev
	Kazakhstan
	Altaides (Hercynian)
	40.00
	2.3
	1.3
	7.5
	0.75
	75.00
	390

	Orlovskoye
	Kazakhstan
	Altaides (Hercynian)
	40.00
	2.4
	0.5
	2.1
	0.80
	47.00
	392

	Ashele (#1)
	China
	Altayshan (Hercynides)
	34.00
	2.51
	
	2.98
	0.57
	104.03
	375

	Xiaotieshan
	China
	Tarim-NorthQilian (Caled.)
	34.00
	1.26
	3.39
	5.33
	2.28
	126.20
	440

	Arctic (Brooks Range,Ak)
	USA
	N.Cordilleran
	32.93
	4
	0.8
	5.5
	0.70
	55.00
	365

	Rosebery
	Australia
	Tasman
	32.70
	0.58
	4.4
	14.5
	2.70
	145.00
	495

	Liwu
	China
	Yidun, Indosinian (Tethyan)
	31.00
	2.5
	
	0.62
	
	
	430

	Belousov
	Kazakhstan
	Altaides (Hercynian)
	30.00
	2.6
	2.4
	9.2
	2.00
	119.00
	395

	Lokken ( Hoydal)
	Norway
	Caledonian
	30.00
	2.3
	0.02
	1.8
	0.29
	19.00
	450

	Jerome- United Verde
	USA
	Yavapai
	30.00
	4.8
	
	0.2
	1.37
	49.70
	1800

	Bald Mountain
	USA
	Appalachian
	29.98
	1.03
	<0.05
	1.12
	0.51
	14.40
	430

	Besshi
	Japan
	Japan arcs(Tethyan)
	29.95
	2.6
	
	0.3
	0.70
	21.00
	210

	Selbaie
	Canada
	Abitibi (Kenoran)
	29.90
	1.21
	
	1.91
	0.63
	37.02
	2730

	Myra Falls Group
	Canada
	N.Cordilleran
	29.32
	1.83
	0.55
	6.25
	2.00
	49.00
	365

	Garpenberg (+Lappberget)
	Sweden
	Svecokarelian
	29.00
	0.3
	3.3
	5.3
	0.65
	98.00
	1890

	Bisha
	Eritrea
	Pan African
	28.60
	1.52
	
	4.63
	1.68
	46.80
	850

	Vihanti
	Finland
	Svecokarelian
	28.10
	0.48
	0.36
	5.12
	0.49
	25.00
	1910

	Falun
	Sweden
	Svecokarelian
	28.10
	3
	1.5
	4
	3.00
	20.00
	1875

	Safyanovka
	Russia
	Uralides (Hercynian)
	27.50
	3.04
	
	1.4
	1.32
	25.00
	392

	McIlvenna Bay
	Canada
	Trans-Hudson
	27.23
	0.9
	0.1
	3.27
	0.34
	16.43
	1900

	Mattagami Lake
	Canada
	Abitibi (Kenoran)
	25.60
	0.42
	
	5.1
	0.30
	21.60
	2725

	Las Cruces ( primary)
	Spain
	Hercynian
	25.20
	1.25
	1.69
	3.63
	0.38
	38.00
	320

	Granduc
	Canada
	N.Cordilleran
	25.06
	1.79
	0.021
	0.1
	0.17
	10.63
	190

	Korbalikhinsk
	Russia
	Altaides (Hercynian)
	25.00
	1.46
	2.01
	9.81
	
	
	375

	Greens Creek
	USA
	N.Cordilleran
	25.00
	0.32
	5.1
	13.9
	5.61
	706.00
	220


* Modified from Franklin et al., 2005
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formation of multiple mineral deposit types, including epithermal and VMS deposits. A good example of this is the Lower Jurassic Hazelton Group in British Columbia, which hosts the Eskay Creek Au-rich VMS deposit (Barrett and Sherlock, 1996b; Nelson and Mihalynuk, 2004). When these strike-slip fault systems propagate into a continental margin setting, such as in the modern day Guaymas Basin, Gulf of California, the strike-slip basins begin to infill with terrige- nous sediment. They can host mafic siliciclastic-hosted VMS deposits, such as the Triassic Windy Craggy and Green’s Creek deposits in British Columbia and Alaska, respectively (Peter and Scott, 1999). These are known as Besshi-type deposits from the type locality in the fore-deep accretionary wedge outboard of the Miocene Japanese islands. Other mafic siliciclastic-hosted VMS deposits occur along modern sedimented seafloor spreading systems such as Middle Valley, on the Juan de Fuca Ridge off the British Columbia coast (Goodfellow et al., 1999).
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F
IGURE
 10. 
Distribution of Canadian VMS deposits with respect to 
(A) 
aggregate base metal grade versus tonnes and 
(B) 
contained Au versus tonnes; most auriferous Au deposits contain >4 g/t Au (green diamonds). Those containing over 1000 tonnes of Au (yellow diamonds) include both auriferous VMS deposits and those with moderate Au grades but large ton- nages. Giant and supergiant VMS deposits are identified by name. From National VMS database (Appendix 1).
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Continental back-arc settings contain some of the world’s most economically important VMS districts. These environ- ments are dominated by bimodal siliciclastic rocks ± iron formation and include the Ordovician Bathurst camp of New Brunswick (van Staal et al., 2003) and Finlayson Lake (Piercey et al., 2001). Examples outside Canada include the Archean Golden Grove camp in Western Australia (Sharpe
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and Gemmell, 2002), the Paleoproterozoic Bergslagen dis- trict of Sweden (Allen et al., 1996b), the Cambro-Ordovician Mount Windsor district of Queensland (Doyle and McPhie, 2000), the Devono-Mississippian Iberian Pyrite Belt (Carvalho et al., 1999), and parts of the Devonian Southern
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Mafic-ultramafic intrusion
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Urals VMS districts of Russia and Kazakhstan (Herrington et al., 2002; Franklin et al., 2005).
Other extensional environments may form in post-accre- tion and/or successor arc settings. Crustal thickening of an accreted ocean-floor-arc assemblage can result in modifica- tion of the angle of descent of the subducting slab, cessation of subduction along a section of plate boundary, or a change in the direction of approach of the colliding plates (Ziegler, 1992; Hamilton, 1995). This process results in the generation of strike-slip basins in the older arc assemblages. Magmatism associated with these successor arc basins may be associated with mineralized porphyry systems (Richards, 2003), and the basins may be infilled with both subaqueous and subaerial bimodal volcanic rocks. This can result in the

FIGURE 11. There are three principal tectonic environments in which VMS
deposits form, each representing a stage in the formation of the Earth’s crust. (A) Early Earth evolution was dominated by mantle plume activity, during which numerous incipient rift events formed basins characterized by early ocean crust in the form of primitive basalts and/or komatiites, fol- lowed by siliciclastic infill and associated Fe-formation and mafic-ultra- mafic sills. In the Phanerozoic, similar types of incipient rifts formed dur- ing transpressional, back-arc rifting (Windy Craggy). (B) The formation of ocean basins was associated with the development of ocean spreading cen- ters along which mafic-dominated VMS deposits formed. The development of subduction zones resulted in oceanic arc formation with associated extensional domains in which bimodal mafic, bimodal felsic, and mafic- dominated VMS deposits formed. (C) The formation of mature arc and ocean-continent subduction fronts resulted in successor arc and continental volcanic arc assemblages that host most of the felsic-dominated and bimodal siliciclastic deposits. Thin black arrows represent direction of extension and thick, pale arrows represent mantle movement. Modified from Groves et al., 1998
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zontal, resulting in the formation of a stratified, district-scale semi-conformable alteration zone controlled in extent by the strike length of the underlying intrusion (Spooner and Fyfe, 1973; Munha and Kerrich, 1980; Lagerblad and Gorbatchev; 1985; Gibson and Watkinson, 1990; Galley, 1993; Alt, 1995; Brauhart et al., 1998; Bailes and Galley, 1999) (Fig. 14). The distribution of the resulting alteration mineral assemblages mimics that of regional metamorphic facies (Spooner and Fyfe, 1973; Alt, 1995; Hannington et al., 2003) (Fig. 15). Hydrothermal fluid reaction zones immediately overlying the intrusions can be altered to amphibolite-facies assem- blages, including Fe-Ca-rich amphibole, clinozoisite, Ca- plagioclase, and magnetite (Figs. 15, 16A,B,C). Above this are Na-Ca-rich greenschist-facies assemblages characterized by albite, quartz, chlorite, actinolite, and epidote. Closer to
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F
IGURE
 12. 
A same-scale comparison of selected VMS districts. A 5 km diameter circle around each deposit shows the hypothetical area of influ- ence of proximal-scale alteration about each deposit, all encircled by a dashed line defining the proposed extent of a regional-scale alteration sys- tem for each camp based on the presence of known felsic volcanic and
 
syn- volcanic formations/intrusions (thin black lines). The Noranda example corresponds closely to the observed alteration. Modified from Sangster (1980).
)District-Scale Environments
Most, but not all VMS deposits, occur in clusters that define major mining camps. Sangster (1980) used the distri- bution of VMS deposits within well known mining districts in Canada to indicate that there was a first-order regional control on their distribution (Fig. 12). In general, the deposit clusters are restricted to either linear rifts or calderas. These features are generated by regional thinning of the basement, decompression melting of the underlying mantle, and gener- ation of mafic magmas (Fig. 13). In ocean spreading-ridge settings, these magmas rise to within a few thousand metres of the seafloor to form elongate gabbroic sills that parallel the seafloor-spreading axes (Stinton and Detrick, 1992). Where pre-existing ocean-floor or arc lithosphere is present, these mafic magmas, at temperatures of 1000 to 1400°C, may underplate the crust, producing intermediate to felsic partial melts and bimodal mafic intrusive/extrusive assem- blages. The associated gabbro-diorite-tonalite-trondhjemite intrusive complexes may rise to within 2 to 3 km of the seafloor (Galley, 2003, and references therein). Where exten- sion is taking place in thicker (20-30 km) crust, such as in a continental back-arc setting, magmas may form mid-crustal intrusions. These melts may not intrude into their comag- matic volcanic assemblages but may remain in the underly- ing basement rocks. These different scenarios result in mul- tiple forms of district-scale alteration and deposit character- istics for a VMS district.
The presence of either mafic or composite high-level sub- volcanic intrusions within a rift or caldera setting will drive a subseafloor hydrothermal-fluid convection system (Galley, 1993; Alt, 1995) (Fig. 14). Connate seawater in the porous
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crust is first heated, causing it to become buoyant. As this heated water rises up synvolcanic fault structures, cold sea- water is drawn in above the cooling intrusion. These origi- nally cold, near neutral pH fluids are progressively heated during their downward migration, interacting with the sur- rounding rocks at progressively higher temperatures. The isotherms above cooling sill complexes are generally hori-

FIGURE 13. VMS environments are characterized by tectonic extension at various scales (open arrows). Extension resulted in crustal thinning, mantle depressurization, and the generation of basaltic melts. Depending on crustal thickness and density, these mafic melts ponded at the base of the crust, resulting in partial melting and generation of granitoid melts. These anhy- drous, high-temperature melts quickly rose to a subseafloor environment (<3 km below seafloor), where their heat initiated and sustained convective hydrothermal cells that formed VMS deposits (black arrows).
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Watkinson, 1990; Brauhart et al., 1998; Galley, 2003). Faults that acted as conduits for volcanic feeder systems were the focal point for ascent of high-temperature, acidic metal- laden hydrothermal fluids that formed VMS deposits. These fault systems may have remained active through several cycles of volcanic and hydrothermal activity. This may have resulted in several periods of VMS formation at different stratigraphic levels within the rift or caldera structure.
Mafic-dominated, bimodal mafic, and bimodal felsic host rocks are dominated by effusive volcanic successions and accompanying, large-scale hypabyssal intrusions (Fig. 17). This high-temperature subseafloor environment supported high-temperature (>350°C) hydrothermal systems, from
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which may have precipitated Cu, Cu-Zn, and Zn-Cu- (Pb) VMS deposits with variable Au and Ag contents. Areally extensive, 1 to 5 m thick, Fe-rich “exhalites” (iron forma- tions) may mark the most prospective VMS horizons (Spry et al., 2000; Peter, 2003) (Fig. 18A). These exhalite deposits consist of a combination of fine volcaniclastic material, chert, and carbonates. They formed during the immature
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and/or waning stages of regional hydrothermal activity when shallowly circulating seawater stripped Fe, Si, and some base metals at <250°C and precipitated them on the seafloor through extensive, but diffuse, low-temperature hydrother- mal venting. Formation of exhalites on a basalt-dominated substrate was commonly accompanied by silicification and/or chloritization of the underlying 200 to 500 m of strata
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(Fig. 18B). Examples of this are observed in the Noranda,
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F
IGURE
 14. 
The development and maturation of a generic subseafloor hydrothermal system involves three stages. 
(A) 
The relatively deep emplacement of a subvolcanic intrusion below a rift/caldera and the estab- lishment of a shallow circulating, low-temperature seawater convection system.
 
This
 
results
 
in
 
shallow
 
subseafloor
 
alteration
 
and
 
associated
 
forma- tion of hydrothermal exhalative sediments. 
(B) 
Higher level intrusion of subvolcanic magmas and resultant generation of a deep-seated subseafloor seawater convection system in which net gains and losses of elements are dictated by subhorizontal isotherms. 
(C) 
Development of a mature, large- scale hydrothermal system in which subhorizontal isotherms control the formation of semiconformable hydrothermal alteration assemblages. The high-temperature reaction zone next to the cooling intrusion is periodically breached due to seismic activity or dyke emplacement, allowing focused upflow of metal-rich fluids to the seafloor and formation of VMS deposits. From Galley
 
(1993).
)Matagami Lake, and Snow Lake VMS camps (Kalogeropoulos and Scott, 1989; Liaghat and MacLean, 1992; Bailes and Galley, 1999). In felsic volcaniclastic-dom- inated terranes, the generation of Fe-formation exhalites was accompanied by extensive K-Mg alteration of the felsic sub- strate, as recorded in the Bergslagen district of Sweden (Lagerblad and Gorbatschev, 1985) and in the Iberian Pyrite Belt (Munha and Kerrich, 1980).
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the seafloor are zeolite-clay and related subgreenschist min- eral assemblages characterized by K-Mg-rich smectites, mixed-layer chlorites, and K-feldspar. In some regional hydrothermal systems, the low-temperature alteration assemblages closest to the seafloor are dominated by car- bonate species due to precipitation from shallowly circulat- ing seawater (Fig. 16D). These chemical and mineralogical changes in the ancient rock record can be further revealed by mapping shifts in bulk rock oxygen and hydrogen isotope compositions of the different zones (Green et al., 1983; Taylor and South, 1985; Aggarwal and Longstaffe, 1987;
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Cathles, 1993; Paradis et al., 1993). These stratified alter- ation zones can have a strike length of 5 to 50 km and a thickness of 1 to 3 km in caldera settings (Fig. 15). The size and areal morphology of the alteration system is a reflection of the size and areal morphology of the VMS deposit cluster (Fig. 12). The distribution of VMS deposits within this clus- ter depends on synvolcanic fault distribution relative to the underlying intrusions (Eastoe et al., 1987; Gibson and

FIGURE 15. Comparison of regional greenschist-facies hydrothermal alter-
ation in the Noranda Volcanic Complex with previously mapped metamor- phic isograds (solid lines from Dimroth et al., 1983; Powell et al., 1993). The distribution of greenschist-facies hydrothermal alteration (shaded) sug- gests that interpreted metamorphic zonation is at least partly a product of early synvolcanic hydrothermal processes. Note that epidote and chlorite in the pre-cauldron sequence are distinct from those of the mine sequence vol- canic rocks, even though they are well within the epidote-actinolite subfa- cies and have been metamorphosed at the same pressure and temperature. Modified from Hannington et al. (2003).
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and
 
magnetite,
 
and
 
interpillow
 
hyaloclastite
 
completely
 
replaced
 
by
 
the
 
same assemblage. This alteration facies directly overlies the subvolcanic Mooshla intrusion, Bousquet VMS camp, Quebec. 
(C) 
Epidosite typical of the root zones of VMS hydrothermal upflow zones in which high fluid/rock ratios have resulted in leaching of lithophile, chalcophile, and low field strength elements from the
 
strata.
 
(D)
 
Chloritoid-rich
 
zone
 
below
 
the
 
Mattabi
 
deposit,
 
Sturgeon
 
Lake,
 
where
 
Fe-rich
 
hydrothermal
 
fluids
 
overprinted
 
a
 
previously
 
formed
 
carbonate- rich regional alteration
 
zone.
)Mafic, felsic, and bimodal siliciclastic volcanic assem- blages tend to host volumetrically smaller mafic and/or fel- sic sill-dyke complexes, and generally contain Zn-Cu-Co and Zn-Pb-Cu-Ag VMS deposits, respectively. More Cu-rich deposits, such as Neves Corvo in the Iberian Pyrite Belt, may also be present in settings proximal to discrete extrusive complexes. The district-scale semiconformable hydrother- mal systems consist of low-temperature mineral assem- blages, with Mg-K smectite and K-feldspar alteration over- lain by extensive units of low-temperature Fe-Si-Mn deposits. Other types of iron formation in VMS districts are interpreted to be products of plume fallout from high-tem- perature hydrothermal venting, or collection of hypersaline brines within fault-controlled depressions on the seafloor (Peter, 2003). Iron formation horizons can extend for tens of kilometres, as in the Bathurst VMS camp in New Brunswick (Peter and Goodfellow, 1996) (Fig. 18C), the Paleoproterozoic Bergslagen district (Allen et al., 1996b), the Devono- Mississippian Iberian Pyrite Belt in Spain and Portugal (Carvalho et al., 1999), and the Mississippian Finlayson Lake camp, Yukon (Peter, 2003). Mineralogical variations within these regionally extensive iron formations, from oxide through carbonate to sulphide, are indicative of prox- imity to more focused, higher temperature hydrothermal vent complexes and also reflect stratification of the water

column in the basin. The mineralogical variations are accompanied by changes in element ratios such as Fe, Mn, B, P, and Zn (exhalative component) versus Al and Ti (detri- tal clastic component) (Peter and Goodfellow, 1996).
Deposit-Scale Environments
VMS deposits consist of a massive to semimassive stratabound sulphide lens, and most are underlain by a sul- phide-silicate stockwork vein system (Figs. 1, 4). Within this broad framework, there is a spectrum of deposit sizes, mor- phologies, and compositions, depending on the nature of the synvolcanic faulting, footwall and host-rock lithology, water depth, size and duration of the hydrothermal system, tem- perature gradients, and degree of preservation. Individual massive sulphide lenses can be over 100 m thick, tens of metres wide, and hundreds of metres in strike length. The 135 Mt Kidd Creek deposit begins at the present erosion sur- face and extends for over 2000 m downplunge (original strike length), with the five composite orebodies over 500 m wide and individual lenses up to 100 m thick. The stratabound sulphide mound component of a VMS deposit may have a number of morphologies and variable internal structure (e.g. Fig. 1). Observations of modern seafloor hydrothermal vent complexes in effusive, flow-dominated terranes indicate that the deposits begin to form as a series of
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)FIGURE 17. Examples of clusters of VMS deposits defining a mining camp. These include (A) the Archean Noranda camp, with 14 bimodal mafic-type deposits underlain by the Flavrian-Powell subvolcanic intrusion (Santaguida et al., 1998); (B) the Paleoproterozoic Flin Flon mining camp, Manitoba, with 17 VMS deposits hosted within a series of block-bounded terranes representing dif- ferent stages of oceanic arc development. For this reason, the district contains a wide variety of VMS deposit types (Syme and Bailes, 1993; Galley and Jonasson, 2003); (C) the Paleoproterozoic Snow Lake camp, Manitoba, with two subvolcanic intrusions (Sneath Lake and Richard Lake) that instigated two sepa- rate hydrothermal events and formed 8 bimodal mafic deposits (modified from Bailes and Galley, 1999); and (D) the Ordovician Bathurst mining camp with 35 deposits dominated by the bimodal siliciclastic deposit type (modified from van Staal et al., 2003).





sulphide-silicate-sulphate chimneys (Fig. 19A). These become structurally unstable with continued growth and col- lapse, and coalesce to form a breccia mound (Fig. 19A,C). Continued circulation of hydrothermal fluids within this breccia mound results in sealing from seawater by a silica, clay, and/or sulphate cap. Progressive deposition of metal sulphides within the mound results in the formation of a complexly textured, semimassive to massive sulphide mound. The flow of hydrothermal fluid through the mound structure commonly results in remobilization of previously

deposited metals along a chemical and temperature gradient perpendicular to the seawater interface. This process is referred to as zone refining (Eldridge et al., 1983) and results in a chalcopyrite±pyrrhotite-rich core and a sphalerite± pyrite±galena-rich outer zone (Fig. 20). In extreme cases, much of the base and precious metals can be remobilized out of the sulphide mound and carried into the seawater column by venting hydrothermal fluids and spent fluids (hot seawa- ter). Massive pyritic cores and thin, base- and precious- metal-enriched outer margins are a characteristic of VMS
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FIGURE 18. (A) Mine contact tuff exhalite horizon (between white lines) that overlies the silicified andesites of the Waite Formation, Noranda, Quebec. (B) Silicified basaltic andesite of the Upper Amulet Formation., Noranda, Quebec, as an example of pervasive silica precipitation that occurred in mafic flows directly underlying tuffaceous exhalite units in many Precambrian VMS camps. (C) Banded magnetite-chert Fe-formation overlying the Austin Brook massive sulphide deposit, Bathurst camp (photo by J.M. Peter).
deposits that have had a protracted thermal history (e.g. Hannington et al., 1998; Petersen et al., 2000).
Although many VMS deposits have a clastic component, this is usually subordinate to the massive sulphide facies. In many cases, such as the hanging-wall orebody at Buttle Lake, British Columbia (Barrett and Sherlock, 1996a), Kidd Creek, Ontario (Hannington et al., 1999b), and Louvicourt, Quebec, these subordinate clastic facies contain a mixture of

sulphide and host-rock fragments (Fig. 19D). Interbedded sulphide and silicate-rich layers form from erosion and peri- odic collapse of a sulphide mound to form sand- to breccia- sized deposits. Examples where these clastic sulphide com- ponents are a dominant part of the deposit include Eskay Creek and Tulsequah Chief, British Columbia (Barrett and Sherlock, 1996a; Sebert and Barrett, 1996), and Buchans, Newfoundland (Walker and Barbour, 1981). In other cases, finely bedded ore lenses may result from high-temperature plume fallout of sulphide particles intermixing with hydrothermal silica, talc, and Mg-smectites, plus ambient background pelagic sedimentation (Peter, 2003, and refer- ences therein). Similar finely banded ores can also be a prod- uct of dynamic recrystallization of sulphides during regional deformation events. VMS deposits readily accommodate strain during regional deformation because of the ductile nature of massive sulphide bodies, and can therefore display much higher degrees of recrystallization and remobilization than the surrounding volcanic and sedimentary strata.
In some cases, VMS deposits do not form on the seafloor but develop as a result of shallow subseafloor replacement. This occurs when hydrothermal fluids infill primary pore space in either extrusive, autoclastic, volcaniclastic, or epi- clastic successions below an impermeable cap. At the Ansil deposit in the Archean Noranda VMS camp, a succession of laminated felsic ash flows/turbidites infilled a small fault- bounded rift on the felsic flow complex. Hydrothermal fluid seepage up the rift margins resulted in unit-by-unit replace- ment of the laminated volcaniclastic layers by pyrite, spha- lerite, and silica (Fig. 21A). This sulphide-impregnated unit was in turn replaced by massive pyrrhotite-chalcopyrite dur- ing a second stage of subseafloor replacement (Galley et al., 1996) (Fig. 21B). Some exceptionally large massive sul- phide deposits have formed within volcanic depressions infilled with autoclastic and heterolithologic debris flow and talus deposits. These include the Horne No. 5 lens (Kerr and Gibson, 1993) Kidd Creek (Hannington et al., 1999b), and several orebodies at Buttle Lake (Barrett and Sherlock, 1996a) (Fig. 21C).
Most Canadian VMS deposits are characterized by dis- cordant stockwork vein systems that commonly underlie the massive sulphide lenses, but may also be present in the immediate stratigraphic hanging-wall strata (Fig. 21D). These stockwork vein systems occur at the centre of more extensive, discordant alteration zones. They form by interac- tion between rising hydrothermal fluids, circulating seawa- ter, and subseafloor rocks. The alteration zones and attendant stockwork vein systems may extend vertically below a deposit for several hundred metres. Proximal hanging-wall alteration can manifest itself as a semi-conformable halo up to tens of metres thick (Brunswick No 12, Bathurst) or may continue above the deposit for tens to hundreds of metres as a discordant alteration zone (Ansil, Noranda). In some cases, the proximal alteration zone and attendant stockwork vein mineralization connects a series of stacked massive sulphide lenses (Amulet, Noranda; LaRonde, Bousquet) representing synchronous and/or sequential phases of ore formation dur- ing successive breaks in volcanic activity.
In plan view, proximal alteration zones may form a halo up to twice the diameter of the massive sulphide lens (Fig. 22), but with deposits such as Chisel Lake, Snow Lake
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IGURE
 19. (A) 
Example of a zoned sulphide chimney from the Endeavour Ridge vent field (I.R. Jonasson). 
(B) 
Typical textures from a massive sulphide mound, Main vent field, Juan de Fuca Ridge. Mineralogical banding is due to incremental chimney growth, with ovoids representing worm casts. Fragment cemented by later sulphide growth during mound collapse and subsequent invasion by hydrothermal fluid. 
(C) 
Clastic sandy sulphide ore from Cretaceous Aarja deposit, Semail ophiolite, Oman. This common texture is created by repeated mound collapse resulting from anhydrite dissolution and recementing with later sulphide (photo by I.R. Jonasson). 
(D) 
Pyrite-sphalerite clast as part of a proximal debris flow, Louvicourt, Val d’Or. 15 cm metal grid for scale.
)camp, or Eskay Creek, British Columbia, footwall alteration can be volumetrically extensive and many times the diame- ter of the massive sulphide lens (Galley et al., 1993). The morphology of proximal alteration zones can vary widely, but generally they tend to widen in proximity to the paleo- seafloor surface, suggesting more intensive interaction between shallowly circulating, or connate, seawater and an ascending hydrothermal fluid. The internal mineralogical zonation of the alteration zones is indicative of these mixing phenomena. A Fe-chlorite-quartz-sulphide±sericite± talc mineral assemblage is commonly associated with the core of stockwork vein mineralization, which becomes increasingly quartz- and sulphide-rich towards the lower contact of the massive sulphide lens. In some cases, talc and/or magnetite


In shallow-water environments (i.e. <1,500 m water depth), boiling may have occurred either in the upflow zone or in the immediate subseafloor. Depending on the extent of boiling, this can result in vertically extensive pyritic stock-

[image: ]Massive sulphide mound

occur at the base of the massive sulphide lens and the top of the alteration pipe, as at several of the Matagami district VMS deposits, the Ansil deposit in the Noranda camp, and the Late Triassic Chu Chua deposit in the Slide Mountain terrane of British Columbia. The core zone is cloaked in a wider zone of Fe-Mg-chlorite-sericite, including phengite in the part of this zone that encompasses the immediate hang- ing wall to the massive sulphide lens. Outboard from this is a zone rich in sericite, phengite, Mg-chlorite, ±albite, ±car-
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bonate, and ±barite. This outer zone may also encompass a
portion of the hanging-wall strata above, and lateral to, the massive sulphide lens.

FIGURE 20. Mineral zonation commonly observed within VMS deposits;
this zoning is largely a function of hydrothermal fluid temperature and com- position. Temperature gradient results in the zoning of sulphide minerals within both the discordant stockwork zone and the conformable sulphide mound. From Lydon (1984).
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IGURE
 21. (A) 
Finely bedded tuff partially replaced by massive pyrrhotite-chalcopyrite at the Ansil deposit, Noranda. 15 cm metal plates for scale.
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Rhyolite clasts cemented by pyrite-sphalerite rich sulphide groundmass, Louvicourt deposit, 
Val 
d’Or. 12 cm red magnet for scale. 
(D) 
Well 
developed pyrrhotite-chalcopyrite vein stockwork zone with intense chlorite alteration of the rhyolite wallrocks, Ansil deposit,
 
Noranda.
)work zones, possibly with widespread and intense sericite- quartz-pyrite alteration. The extensive sericite-rich alteration system that underlies the Eskay Creek auriferous VMS deposit may be a product of extensive subsurface boiling of hydrothermal fluids, which resulted in the formation of low- temperature (<200°C) Sb-Hg-As-Pb sulphosalt-rich ore lenses (Sherlock et al., 1999). More advanced argillic alter- ation may be produced by acidic magmatic volatiles, and this alteration can lead to distinctive aluminosilicate-rich mineral assemblages when metamorphosed to greenschist grade. In the case of the LaRonde deposit, Quebec, “classic” mound- type Zn-Cu-Au massive sulphide lenses are associated with extensive zones of metamorphosed argillic alteration con- taining pyrite-chalcopyrite-bornite-gold stockwork systems. This may be the result of shallow subsurface boiling and sep- aration of a volatile-rich fluid or focused input of oxidized magmatic fluids (Dubé et al., 2004).
In less extreme cases, distal, low-temperature hydrother- mal alteration assemblages associated with VMS deposits may be difficult to distinguish from regional greenschist- facies metamorphic mineral assemblages. When both proxi- mal and regional semiconformable alteration zones are affected by amphibolite-grade regional or contact metamor- phism, the originally strongly hydrated alteration mineral assemblages change into a coarse-grained quartz-phyllosili- cate-aluminosilicate assemblages that are very distinct from the surrounding unaltered strata (Fig. 23). It then becomes

possible to use the systematic variations in these coarse- grained metamorphic mineral assemblages as vectors towards the core of the proximal alteration system or upsec- tion towards the paleo-seafloor (Hodges and Manojlovic, 1993).
Genetic/Exploration Models
Exploration models for VMS systems have several com- mon themes despite the large variety of submarine environ- ments in which the deposits can form. The generation of a VMS-hosting volcanic complex is a response to focused heat flow caused by tectonic extension, mantle depressurization, and the resultant formation of high-temperature mantle melts, crustal partial melts, and common bimodal volcanic succession. The large majority of VMS deposits in Canada form in either bimodal mafic or bimodal felsic volcanic ter- ranes dominated by basalt-basaltic andesite and rhyolite-rhy- odacite. Prospective VMS-hosting arc terranes are character- ized by bimodal volcanic successions that have a tholeiitic to transitional tholeiitic-calc alkaline composition. The felsic volcanics are characterized by low Zr/Y (<7) and low (La/Yb)N (<6) ratios, with elevated high field strength ele- ment contents (Zr >200 ppm, Y >30 ppm, and elevated LREE and HREE) typical of high-temperature, reduced magmas derived from partially hydrated crust (Barrie et al., 1993; Barrie, 1995; Lentz, 1998). The lower viscosities of the high-temperature felsic magmas result in rapid ascent
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A schematic composite section through a VMS alteration sys- tem in the Bathurst mining camp as an example of a VMS proximal alter- ation
 
zone
 
metamorphosed
 
to
 
greenschist-grade
 
mineral
 
assemblages.
 
From Goodfellow et al.
 
(2003).
)
with minimal heat loss into subseafloor settings where hydrothermal convection can be initiated. For this reason, most prospective VMS environments are characterized by high-level sill-dyke swarms, discrete felsic extrusive centres, and large (>15 km long and 2000 m thick) subvolcanic com- posite intrusions. The absence of substantial subvolcanic intrusions in some camps may be due to poor preservation as a result of folding and faulting.
The interaction of large volumes of volcanic strata with seawater within these high-heat extensional environments results in the formation of district-scale alteration zones that extend over the strike length of the VMS-hosting extensional feature (spreading ridge, rift, or caldera). Stacked alteration zones can have an aggregate thickness of 2000 to 3000 m, and may be intruded by resurgent phases of the underlying subvolcanic intrusion. Subvolcanic intrusions themselves can display textural features indicating high-level devolatilization and high-temperature magmatic hydrother- mal alteration (quartz-epidote-magnetite-ferroactinolite-sul- phides). In some cases, this devolatilization may contribute metals to the overlying convective hydrothermal system (Large et al., 1996; Lydon, 1996; Galley, 2003, and refer- ences therein). Regional semiconformable alteration systems resemble regional metamorphic zones (zeolite, greenschist, amphibolite), with increasing grade towards the heat source. Most Canadian VMS districts have been affected by regional metamorphism, which has resulted in recrystallization of the original alteration minerals to greenschist and/or amphibo- lite assemblages. In camps such as Noranda, Bousquet, Sturgeon Lake, Manitouwadge, Snow Lake, Leaf Rapids, and the western Stikine (Tulsequah Chief), regional meta- morphism or local contact metamorphism of alteration min- erals has produced distinctive coarse-grained mineral assem- blages characterized by such minerals as phlogopite, cordierite, anthophyllite, muscovite, staurolite, garnet, andalusite, and kyanite. The metamorphosed alteration can

activity. Precambrian VMS-related exhalites are commonly composed of finely bedded, sulphide-rich tuffaceous mate- rial. More extensive Algoma-type oxide facies Fe-forma- tions are also common in VMS-prospective back-arc envi- ronments of all ages. Both types of exhalite may form prox- imal to massive sulphide deposits or extend for strike lengths of several kilometres to tens of kilometres (Spry et al., 2000; Peter, 2003). Proximity to a hydrothermal source in these formations is indicated by positive inter-element correlation between hydrothermal components (Eu, Fe, Mn, Pb, Zn, Cd, Au, Ca, Sr, Ba, P, and CO2) versus clastic components (Si, Ti, Al, Mg, K, and Zr), increasing chondrite normalized EuEu* (hydrothermal input), and decreasing Ce/Ce* (sea- water input) towards the source (Peter and Goodfellow, 1996; Peter, 2003). Vertical and horizontal facies vary from oxide through silicate to carbonate, which in some cases, also may reflect proximity to focused hydrothermal activity (Peter, 2003).
Key Exploration Criteria
The following are the major exploration criteria for Canadian VMS deposits and key attributes of VMS-hosting volcanic complexes.
The deposits occur in volcanic belts from Late Archean to Eocene in which extension is indicated by relatively primi- tive (tholeiitic to transitional) bimodal volcanism in nascent- arc, rifted-arc, and back-arc environments. Some obducted seafloor-spreading centres and rifted continental margins are also prospective.
VMS formation occurs during periods of major ocean- closing and terrane accretion. These include the Late Archean (2.8-2.69 Ga), Paleoproterozoic (1.92-1.87 Ga), Cambro-Ordovician (500-450 Ma), Devono-Mississippian (370-340 Ma), and Early Jurassic (200-180 Ma).
In effusive flow-dominated settings in oceanic arc and continental margin arcs, VMS deposits can be associated with 15 to 25 km long, mafic to composite synvolcanic intru- sions. These intrusions are Na-rich and depleted in low field strength elements and have low airborne radiometric responses but commonly show magnetic halos due to sur- rounding zones of high-temperature fluid interaction. Exploration should be focused up to 3000 m upsection in the comagmatic volcanic suites in the hanging wall of the intru- sions. Rhyolites with high Zr (>300 ppm), negative chon- drite-normalized Eu anomalies, (La/Yb)N values of less than 7, (Gd/Yb)N values of less than 2, and Y/Zr ratios of less
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be distinguished from essentially isochemical regional meta- morphic mineral assemblages by the losses and gains of var- ious elements during fluid-rock interactions (Fig. 15).
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Submarine volcanic stratigraphy that is prospective for VMS mineralization commonly contains ferruginous exhala- tive horizons as an indication of subseafloor hydrothermal

FIGURE 23. A stylized cross-section through the proximal alteration zone at
the Chisel deposit, Snow Lake mining camp, illustrating the changes in mineral assemblages that occur when the terrane undergoes lower to mid- dle amphibolite-grade regional metamorphism. From Galley et al. (1993).

than 7 define high-temperature (>900°C) felsic volcanic environments favourable for VMS formation. The presence of synvolcanic dyke swarms and exhalite horizons are indicative of areas of high paleo-heat flow.
In continental back-arc, bimodal siliciclastic-dominated settings aeromagnetic surveys can be used to identify aeri- ally extensive iron formations to target hydrothermally active paleo-seafloor horizons. Variations in the mineralogy of the iron formations and varying element ratios can serve as vectors toward high-temperature hydrothermal centres. Volumetrically minor sill-dyke complexes also may identify higher temperature hydrothermal centres.
In upper greenschist-amphibolite metamorphic terranes, distinctive, coarse-grained mineral suites commonly define VMS alteration zones. These include chloritoid, garnet, stau- rolite, kyanite, andalusite, phlogopite, and gahnite. More aluminous mineral assemblages commonly occur closer to a high-temperature alteration pipe. Metamorphic mineral chemistry, such as Fe/Zn ratio of staurolite, is also a vector to ore. These largely refractory minerals have a high survival rate in surficial sediments, and can be used through heavy mineral separation as further exploration guides in till-cov- ered areas.
Mineralogy and chemistry can be used to identify large- scale hydrothermal alteration systems in which clusters of VMS deposits may form. Broad zones of semiconformable alteration will show increases in Ca-Si (epidotization-silici- fication), Ca-Si-Fe (actinolite-clinozoisite-magnetite), Na (spilitization), or K-Mg (mixed chlorite-sericite±K- feldspar). Proximal alteration associated with discordant sul- phide-silicate stockwork vein systems includes chlorite- quartz-sulphide- or sericite-quartz-pyrite±aluminosilicate- rich assemblages and is typically strongly depleted in Na and Ca due to high-temperature feldspar destruction. In addition to geochemical analysis, X-ray diffraction, PIMA, and oxy- gen isotope analysis can assist in vectoring towards higher temperature, proximal alteration zones and associated VMS mineralization. Although PIMA has been used most effec- tively on alteration systems that contain minerals with a high reflective index, there has been some success in identifying greenschist-facies minerals within Precambrian VMS hydrothermal systems (Thompson et al., 1999)
Knowledge Gaps
Researchers have gathered an impressive amount of knowledge over the last ten years with respect to how, and where, VMS deposits form within various geodynamic regimes. This is due to a combination of studies of modern seafloor environments and detailed and regional-scale stud- ies of ancient VMS environments. These studies have allowed us to place VMS depositional environments within the context of diverse supra-subduction settings that can be identified in deformed and metamorphosed terranes through lithostratigraphic facies evaluation and lithogeochemical analyses. Prospective settings for subseafloor hydrothermal systems can now be determined through identification of synvolcanic intrusions that trigger the systems, geochemical variations in altered rocks and chemical sedimentary hori- zons, and the use of mineralogy, geochemistry, and isotope geology. The fundamental ingredient for the efficient use of

these tools is an appropriate level of understanding of the architecture of the volcanic terranes. Mapping at 1:20 thou- sand scale and complementary geochronological studies of the Flin Flon, Snow Lake, Leaf Rapids, and Bathurst mining camps were key to understanding the evolution of the vari- ous VMS-hosting arc assemblages and at what period of time in this evolution the deposits formed. Detailed lithos- tratigraphic mapping was essential in unraveling deforma- tion histories and understanding the structural repetitions of prospective ore horizons. At larger scales, we still need a bet- ter understanding of the longevity of hydrothermal systems and the character and scale of fluid flow into both volcanic and sedimentary hanging-wall strata. We also need a better understanding of how to prospect for VMS environments through thick drift cover using novel heavy mineral analysis and selective leach methods. Successful exploration under cover requires improved understanding of the processes of secondary and tertiary remobilization of metals and trace elements from a VMS deposit and its associated alteration system.
Some Areas of High Mineral Potential in Canada
The recognition of new classes of high-sulphidation and shallow-water VMS deposits and their genetic association with differentiated magmatic suites in both calc-alkaline and alkaline volcanic arcs opens up new terranes and volcanic environments to exploration that were previously considered non-prospective for VMS. These environments include arc fronts and successor magmatic arcs in addition to primitive rifted-arc and back-arc terranes. Calc-alkaline to alkaline ter- ranes, such as the Triassic Nicola Group and the Lower Jurassic Hazelton Group in British Columbia, should be revisited for atypical VMS deposits. Evolved parts of Archean greenstone terranes, in particular >2.8 Ga terranes in which there was involvement of early sialic crust, should also be considered in this context, e.g. Frotet-Troilus Domain, Grand Nord, North Caribou, and western Slave subprovinces.
Incipient rift environments of the Paleoproterozoic Trans- Hudson Orogen: The presence of large volumes of iron for- mation and associated VMS mineralization in the Labrador Trough is evidence of extensive hydrothermal systems gen- erated in these 2.1 to 2.0 Ga rift systems on both margins of the orogen. Why did these not develop large VMS deposits as in other Fe-formation-rich environments (e.g. Manitouwadge)?
Intrusions associated with Ni-Cu-PGE mineralization rep- resent large volumes of magma, commonly emplaced at shallow crustal levels as part of volcano-plutonic complexes. If emplaced in a subaqueous environment, these terranes should be highly prospective for mafic siliciclastic or mafic- dominated VMS deposits. These may include the submarine volcanic stratigraphy above the Fox River and Bird River sills in Manitoba and possibly the Bad Vermilion anorthositic complex in southwestern Ontario.
Intra-continental back-arc environments have been recog- nized as highly prospective for VMS deposits. Where are the continental back-arc environments in the Superior, Slave, and Grenville provinces? Have we explored enough in the
>2.8 or <1.5 Ga terranes?

Terranes affected by thin-skinned fold-thrust tectonics present special challenges for exploration but are also highly prospective for VMS deposits. The potential for new explo- ration targets in areas such as the Central Volcanic Belt of Newfoundland is high, and the lessons learned in the Iberian Pyrite Belt with respect to exploring in such terranes can be applied in these and other similar terranes in Canada.
The so-called oceanic terranes of British Columbia, such as the Triassic Slide Mountain and Cache Creek terrane, should be re-evaluated for their VMS potential in light of the possibility that they represent back-arc and not ocean-basin environments. The presence of boninite and subvolcanic tonalite-trondhjemite intrusions ± rhyolites in these terranes would be key indicators of possible arc-back-arc systems. Boninite, in particular, is an indication of a depleted mantle source typical of nascent to back-arc regimes (Crawford et al., 1989; Stern et al., 1995; Kerrich at al., 1998; Piercey et al., 2001).
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