Immunologic correlates of ONCOS-102 therapy in patients with advanced solid tumors

Dmitriy Zamarin, MD, PhD
Memorial Sloan Kettering Cancer Center
on behalf of ONCOS-102 investigators
November 6, 2015
Presenter Disclosure Information

Dmitriy Zamarin MD PhD

The following relationships exist related to this presentation:

No relationships to disclose
ONCOS-102: genetically modified oncolytic adenovirus encoding GM-CSF

Selective replication in Rb/p16 defective cancer cells

Improved infectivity of cancer cells

Transgene expression coupled to virus replication
-> expression only in tumor cells
ONCOS-102 replicates in cancer cells and induces immunogenic cell death

Intratumoral administration

- ONCOS-102 replicates in cancer cells and induces immunogenic cell death
- CRT
- GM-CSF
- Cytokines
- ATP
- HMGB1
- Calreticulin A

Cell viability

- Low passage melanoma
- Lung cancer

H226 Mesothelioma

- Untreated cells
- ONCOS-102 treated cells

Cell viability graphs for low passage melanoma and lung cancer, showing the effect of ONCOS-102 and Ad5wt on cell viability.
Phase I study of intratumoral ONCOS-102 with low dose cyclophosphamide in patients with advanced solid tumors

<table>
<thead>
<tr>
<th>Dose</th>
<th>Patient number</th>
<th>WHO score</th>
<th>Age/Sex</th>
<th>Cancer type</th>
<th>Number of previous lines of therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×10^{10} VP</td>
<td>FI1-01</td>
<td>1</td>
<td>64 / F</td>
<td>Ovarian</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>FI1-02</td>
<td>0</td>
<td>61 / M</td>
<td>Colon</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FI1-04</td>
<td>0</td>
<td>55 / F</td>
<td>Colon</td>
<td>4</td>
</tr>
<tr>
<td>1×10^{11} VP</td>
<td>FI1-06</td>
<td>0</td>
<td>63 / M</td>
<td>Liver</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FI1-08</td>
<td>1</td>
<td>63 / F</td>
<td>Lung</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FI1-09</td>
<td>1</td>
<td>63 / M</td>
<td>Mesothelioma</td>
<td>2</td>
</tr>
<tr>
<td>3×10^{11} VP</td>
<td>FI1-13</td>
<td>0</td>
<td>53 / M</td>
<td>Rectum</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>FI1-14</td>
<td>1</td>
<td>68 / M</td>
<td>Mesothelioma</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FI1-15</td>
<td>1</td>
<td>67 / F</td>
<td>Endometrial</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>FI1-16</td>
<td>1</td>
<td>64 / F</td>
<td>STS</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>FI1-17</td>
<td>1</td>
<td>51 / F</td>
<td>Breast</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>FI1-18</td>
<td>0</td>
<td>38 / F</td>
<td>Ovarian</td>
<td>7</td>
</tr>
</tbody>
</table>

- 115 cancer patients with solid refractory tumors were treated with ONCOS-102 in Advanced Therapy Access Program (ATAP) before the current Phase 1 study.
ONCOS C1: a Phase I study of intratumoral ONCOS-102 with low dose cyclophosphamide in patients with advanced solid tumors

- No DLT’s were seen in any treatment groups
- Most AEs were grade 1-2, primarily pyrexia and flu-like symptoms.
Efficacy assessment

Patients
- 100% chemo refractory (up to 16 lines)
- 66% had prior surgery
- 50% had prior radiotherapy
- 2 pts died before 3 months

Table: RECIST1.1 (3 months)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Tumor Type</th>
<th>RECIST1.1 (3 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI1-01</td>
<td>Ovarian</td>
<td>SD</td>
</tr>
<tr>
<td>FI1-02</td>
<td>Colon</td>
<td>SD</td>
</tr>
<tr>
<td>FI1-04</td>
<td>Colon</td>
<td>PD</td>
</tr>
<tr>
<td>FI1-06</td>
<td>Liver</td>
<td>PD</td>
</tr>
<tr>
<td>FI1-08</td>
<td>Lung</td>
<td>PD</td>
</tr>
<tr>
<td>FI1-09</td>
<td>Mesothelioma</td>
<td>PD</td>
</tr>
<tr>
<td>FI1-13</td>
<td>Rectum</td>
<td>PD</td>
</tr>
<tr>
<td>FI1-14</td>
<td>Mesothelioma</td>
<td>SD</td>
</tr>
<tr>
<td>FI1-17</td>
<td>STS</td>
<td>PD</td>
</tr>
<tr>
<td>FI1-19</td>
<td>Ovarian</td>
<td>SD</td>
</tr>
</tbody>
</table>

SD = Stable disease, PD = Progressive disease

Alive with SD >24 months

FI1-14 Mesothelioma

- 6 months
- 7.5 months

Total PET activity (> 2.5 SUVmax)

- 6 months: 4000
- 7.5 months: 1500
Several immune cell subsets were increased in tumors following ONCOS-102

CD68

- SD at 3 months
- PD at 3 months
- Tumor-specific CD8+ T cells in blood

CD8

CD4

Fold-change from baseline

SD at 3 months
PD at 3 months
Tumor-specific CD8+ T cells in blood
Increase in tumor-infiltrating immune cells following ONCOS-102 treatment is associated with increased survival.

CD3

- Fold change from baseline
- Absolute overall survival (months)
- $r=0.87$
- $p=0.0003$

CD8

- Pt FI1-19, (alive)
- $r=0.75$
- $p=0.005$

CD68

- $r=0.74$
- $p=0.006$

CD11c

- $r=0.71$
- $p=0.009$
High number of CD68+ TAMs in baseline tumors was associated with short survival

High number of intratumoral CD68+ cells after ONCOS-102 therapy was associated with increased survival

Spearman’s rank correlation
$\rho = 0.04$
$R = -0.59$

Spearman’s rank correlation
$\rho = 0.01$
$R = 0.71$
Macrophage plasticity

M1 macrophage
- Promote T\(_H\)1 response
- Efficient antigen presentation
- Tumor destruction

M2 macrophage
- Promote T\(_H\)2 response
- Anti-inflammatory
- Immunoregulation

Adapted from Biswas and Mantovani Nature Immunol 2010
Tumors with increased CD68+ cells exhibit M1 macrophage transcriptional signature

Gene expression analysis

CD68+ cells in tumor (Fold change from baseline)

M1 markers

M2 markers

CXCL9

CXCL10

CCL17

CCL22

CCL24
Local ONCOS-102 administration leads to induction of systemic tumor-specific CD8+ T cell response:

Mesothelioma pt FI1-14: induction of MAGE-A3 specific CD8+ T cells

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Weeks 1-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No peptide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAGE-A3 p271-279</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OvCa pt FI1-19: multiple tumor-specific CD8+ T cell populations induced by ONCOS-102

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Weeks 1-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>No peptide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesothelin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fold-change from baseline

![Bar chart](chart.png)

NY-ESO-1 specific CD8+ T cells present 17 mo after previous ONCOS-102 treatment, alive and SD >24 mo
CD8+ T cell infiltration was associated with an increased PD-L1 expression in mesothelioma tumors

<table>
<thead>
<tr>
<th>CD8+ cells in tumors</th>
<th>IFN-gamma in tumors</th>
<th>PD-L1 in tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>After ONCOS-102</td>
<td>Baseline</td>
</tr>
<tr>
<td>Pat. FI1-09</td>
<td></td>
<td>After ONCOS-102</td>
</tr>
<tr>
<td></td>
<td>Log gene expression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>Pat. FI1-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Log gene expression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9,0</td>
<td></td>
</tr>
</tbody>
</table>
Summary and Take Home Points

- Intratumoral administration of ONCOS-102 to patients with advanced solid tumors was safe and had evidence of clinical benefit.
- High density of CD68+ TAMs in baseline tumor biopsies was associated with short survival.
- Increase in CD68+ TAMs and other immune cells in post-treatment biopsies was associated with increased survival.
- Treatment with ONCOS-102 converts tumors to "inflamed" phenotype with evidence of systemic tumor-specific immune response.
- Data suggest that ONCOS-102 may reduce local immune suppression by recruiting beneficial immune cells into tumors.
- There is a rationale for evaluation of ONCOS-102 in combination with other immunotherapies (e.g. checkpoint inhibitors).
Acknowledgments

Docrates Cancer Center, Finland
- Timo Joensuu
- Tuomo Alanko
- Kaarina Partanen
- Kalevi Kairemo

Oncos Therapeutics, Finland
- Sari Pesonen
- Tiina Hakonen
- Charlotta Backman
- Mikael von Euler
- Tuuli Ranki
- Antti Vuolanto
- Magnus Jäderberg

Medizinische Klinik, Hämatologie-Onkologie Krankenhaus Nordwest, Frankfurt, Germany
- Elke Jäger
- Julia Karbach
- Claudia Wahle

Division of Pathology, HUSLAB, Haartman Institute
- Ari Ristimäki

Institute for Molecular Medicine, Finland
- Johan Lundin
- Nina Linder
- Riku Turkki

Cancer Gene Therapy Group, Haartman Institute
- Akseli Hemminki

The patients and their families!!!