Corindus Vascular Robotics (CVRS)
March 2017
Forward Looking Statements

THIS PRESENTATION CONTAINS "FORWARD-LOOKING STATEMENTS" (AS SUCH TERM IS DEFINED IN SECTION 27A OF THE SECURITIES ACT OF 1933, AS AMENDED, AND SECTION 21E OF THE SECURITIES EXCHANGE ACT OF 1934, AS AMENDED), AND INFORMATION RELATING TO THE COMPANY, THAT ARE BASED ON THE CURRENT BELIEFS OF, AND ASSUMPTIONS MADE BY OUR MANAGEMENT AND THE INFORMATION CURRENTLY AVAILABLE TO OUR MANAGEMENT. FORWARD-LOOKING STATEMENTS RELATE TO EXPECTATIONS CONCERNING MATTERS THAT ARE NOT HISTORICAL FACTS. WORDS SUCH AS "ANTICIPATE," "BELIEVE," "ESTIMATE," "EXPECT," "INTEND," "PLAN," "PREDICT," "OPINION," "WILL" AND SIMILAR EXPRESSIONS AND THEIR VARIANTS, ARE INTENDED TO IDENTIFY FORWARD-LOOKING STATEMENTS. THESE FORWARD-LOOKING STATEMENTS INCLUDE, BUT ARE NOT LIMITED TO STATEMENTS RELATED TO OUR EXPECTED BUSINESS, PRODUCTS, ADOPTION OF ROBOTIC MEDICAL PROCEDURES, RESULTS OF OPERATIONS, FUTURE FINANCIAL CONDITION, ABILITY TO INCREASE OUR REVENUES, AND SIMILAR MATTERS. THESE FORWARD-LOOKING STATEMENTS SHOULD BE CONSIDERED IN LIGHT OF VARIOUS IMPORTANT FACTORS, INCLUDING, WITHOUT LIMITATION, THE RATE OF ADOPTION OF OUR CORPATH SYSTEM AND THE RATE OF USE OF OUR CASSETTES; RISKS ASSOCIATED WITH MARKET ACCEPTANCE, INCLUDING PRICING AND REIMBURSEMENT; OUR ABILITY TO ENFORCE OUR INTELLECTUAL PROPERTY RIGHTS; OUR NEED FOR ADDITIONAL FUNDS TO SUPPORT OUR OPERATIONS; OUR ABILITY TO MANAGE EXPENSES AND CASH FLOW; FACTORS RELATING TO ENGINEERING, REGULATORY, MANUFACTURING, SALES AND CUSTOMER SERVICE CHALLENGES; POTENTIAL SAFETY AND REGULATORY ISSUES THAT COULD SLOW OR SUSPEND OUR SALES; THE EFFECT OF CREDIT, FINANCIAL AND ECONOMIC CONDITIONS ON CAPITAL SPENDING BY OUR POTENTIAL CUSTOMERS; THE IMPACT OF GLOBAL AND REGIONAL ECONOMIC AND CREDIT MARKET CONDITIONS ON HEALTH CARE SPENDING; HEALTH CARE REFORM LEGISLATION IN THE UNITED STATES AND ITS IMPACT ON HOSPITAL SPENDING; REIMBURSEMENT AND FEES WHICH WILL BE LEVIED ON CERTAIN MEDICAL DEVICE REVENUES, DECREASES IN HOSPITAL ADMISSIONS AND ACTIONS BY PAYERS TO LIMIT OR MANAGE SURGICAL PROCEDURES TIMING AND SUCCESS OF PRODUCT DEVELOPMENT AND MARKET ACCEPTANCE OF DEVELOPED PRODUCTS, PROCEDURE COUNTS; REGULATORY APPROVALS, CLEARANCES AND RESTRICTIONS; GUIDELINES AND RECOMMENDATIONS IN THE HEALTH CARE AND PATIENT COMMUNITIES, INTELLECTUAL PROPERTY POSITIONS AND LITIGATION, COMPETITION IN THE MEDICAL DEVICE INDUSTRY AND IN THE SPECIFIC MARKETS OF SURGERY IN WHICH WE OPERATE, THE INABILITY TO MEET DEMAND FOR PRODUCTS, THE RESULTS OF LEGAL PROCEEDINGS TO WHICH WE ARE OR MAY BECOME A PARTY, PRODUCT LIABILITY AND OTHER LITIGATION CLAIMS. ADVERSE PUBLICITY REGARDING OUR COMPANY AND SAFETY OF OUR PRODUCTS AND THE ADEQUACY OF TRAINING; OUR ABILITY TO EXPAND IN FOREIGN MARKETS; AND OTHER RISK FACTORS. READERS ARE CAUTIONED NOT TO PLACE UNDUE RELIANCE ON THESE FORWARD-LOOKING STATEMENTS, WHICH ARE BASED ON CURRENT EXPECTATION AND ARE SUBJECT TO RISKS, UNCERTAINTIES; AND ASSUMPTIONS THAT ARE DIFFICULT TO PREDICT, INCLUDING THOSE RISK FACTORS DESCRIBED IN THE COMPANY’S ANNUAL REPORT ON FORM 10-K FOR THE FISCAL YEAR ENDED ON DECEMBER 31, 2015. OUR ACTUAL RESULTS MAY DIFFER MATERIALLY AND ADVERSELY FROM THOSE EXPRESSED IN ANY FORWARD-LOOKING STATEMENTS, WE UNDERTAKE NO OBLIGATION TO PUBLICLY UPDATE OR RELEASE ANY REVISIONS TO THESE FORWARD-LOOKING STATEMENTS EXCEPT AS REQUIRED BY LAW.
Robotics Market

Robotics market expected to double in 4 years to $135B

Source: International Data Corporation

Robotics in Manufacturing

Robotics in Healthcare

Robots in Hazardous Areas

Auto-Driving Cars

Robotics Market (Billions)

$135
$71

17% CAGR

2015 2019
Global Medical Robotics Market

Healthcare sector expected to grow fastest

>30 companies developing robotic technologies

<table>
<thead>
<tr>
<th>Company</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intuitive Surgical</td>
<td>1st Surgical Robot for general laparoscopic procedures</td>
</tr>
<tr>
<td>Verb Surgical</td>
<td>Surgical robot with enhanced information for decision making</td>
</tr>
<tr>
<td>Mazor Robotics</td>
<td>Orthopedics – Spine surgery</td>
</tr>
<tr>
<td>Stryker</td>
<td>Orthopedics</td>
</tr>
<tr>
<td>Corindus</td>
<td>1st robotic system for PCI</td>
</tr>
</tbody>
</table>
Interventional Market Opportunity

Large & growing worldwide market

- $4.5B FY2018 market estimate\(^1\)
- Non-PCI procedure types: Peripheral Vascular\(^2\), Neurointerventional and Structural Heart
- 2018 estimated PCI procedure volume\(^3\):
 - 933,000 in the US
 - 1,800,000 OUS
- 2018 estimated non-PCI procedure volume\(^3\):
 - 1,200,000 in the US
 - 1,800,000 OUS

\(^1\) Market opportunity assessment based on market research reports and Corindus estimate

\(^2\) Peripheral Vascular includes lower limb, carotid, renal, iliac and AAA (abdominal aortic aneurysm) procedures

\(^3\) Millennium Research Group
Corindus Today
A leader in vascular robotics

LARGE Market Opportunity with Long **GROWTH** Runway
$4.5B1 market opportunity in 2018 driven by over 2.5 million coronary and 3 million non-coronary procedures performed per year

DIFFERENTIATED Technology
ONLY FDA cleared robotic platform for percutaneous coronary intervention (“PCI”), radial PCI and peripheral interventions*

Proving **BENEFIT** to Physician, Patient, Hospital
Studies have shown a greater than 95% reduction in radiation exposure for the physician when using CorPath System2

Robust **INTELLECTUAL PROPERTY** Portfolio
With over 50 patents issued worldwide, Corindus has ring-fenced patents around co-axial robotic movement

1Market opportunity assessment based on market research reports and Corindus estimate
2Weisz, G. et al. Safety and Feasibility of Robotic Percutaneous Coronary Intervention: PRECISE Study. J Am Coll Cardiol. 2013;61(15):1596-1600. PRECISE Trial was conducted with the CorPath 200 System.
*Only the CorPath 200 System is indicated for use in peripheral vascular interventions
Recent Milestones

<table>
<thead>
<tr>
<th>CAPITAL RAISE</th>
<th>STRATEGIC AGREEMENT</th>
<th>GRX LAUNCH</th>
<th>MULTI-SYSTEM ORDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$45 MILLION</td>
<td>Expansion to Japan</td>
<td>1st Commercial Cases</td>
<td>Building Robotic Programs</td>
</tr>
<tr>
<td>▪ Expected to close March 15, 2017</td>
<td>▪ Japan Medicalnext became the exclusive distributor of Corindus products in Japan*</td>
<td>▪ First procedures using GRX System</td>
<td>▪ Multi-system orders at Baylor Health and the VA</td>
</tr>
<tr>
<td>▪ New investors included BSX, BioStar Ventures, Consonance Capital, and Hudson Executive Capital</td>
<td>▪ Initial order for 12 CorPath GRX Systems with $2 million advance toward the purchase price</td>
<td>▪ Performed at NewYork-Presbyterian, UC San Diego Health, and University of Virginia Health System</td>
<td></td>
</tr>
<tr>
<td>▪ Royal Philips and HealthCor Partners Management also participated</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*PMDA approval pending
New Leadership & Strengthening Team

Building operational & clinical excellence

Mark Toland
President & CEO
20 Year Medical Device Veteran

J. Aaron Grantham, MD
Chief Medical Officer
Practicing Interventional Cardiologist

Marty Leon, MD
Executive Advisor
Interventional Cardiology Thought Leader

Campbell Rogers, MD
Board of Directors
CMO of Heartflow

Louis Cannon, MD
Board of Directors
Managing Director, BioStar Ventures

Bill Lombardi, MD
Steering Committee
University of Washington

Sunil Rao, MD
Steering Committee
Duke University

Ryan Madder, MD
Steering Committee
Spectrum Health

David Kandzari, MD
Steering Committee
Piedmont Heart
Traditional PCI vs CorPath Robotic PCI
Robotic precision may improve outcomes, economics and safety

Today’s Cath Lab Environment
- High radiation exposure
- Significant fatigue and orthopedic strain

Robotic Cath Lab
- Shields from radiation
- Potential to reduce fatigue and orthopedic strain

<table>
<thead>
<tr>
<th>Manual PCI</th>
<th>PCI steps</th>
<th>Robotic-assisted PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Struggle to see angiography</td>
<td>Assess Anatomy</td>
<td>Close proximity ergonomic visualization</td>
</tr>
<tr>
<td>Trial & error, wire spinning</td>
<td>Navigate</td>
<td>Precise ‘Point & Shoot’ predictability</td>
</tr>
<tr>
<td>‘Eyeball’ estimate</td>
<td>Measure Anatomy</td>
<td>Robotic-assisted sub-mm Measurement</td>
</tr>
<tr>
<td>Manual adjustment</td>
<td>Position Stent</td>
<td>1mm precise positioning</td>
</tr>
<tr>
<td>Devices loose during inflation</td>
<td>Deploy Stent</td>
<td>Fixated devices during deployment</td>
</tr>
</tbody>
</table>

Traditional PCI

- Struggle to see angiography
- Trial & error, wire spinning
- ‘Eyeball’ estimate
- Manual adjustment
- Devices loose during inflation

PCI steps

- Assess Anatomy
- Navigate
- Measure Anatomy
- Position Stent
- Deploy Stent

Robotic-assisted PCI

- Close proximity ergonomic visualization
- Precise ‘Point & Shoot’ predictability
- Robotic-assisted sub-mm Measurement
- 1mm precise positioning
- Fixated devices during deployment
CorPath Clinical Benefit

Procedural Control
- Bedside improvements to enhance workflow
- Open architecture
- Potential to improve patient outcomes
- Evidence of success in complex PCI

Robotic Precision
- 1mm movements for precise positioning
- Sub mm measurement to select the most appropriate stent
- Reduce stent utilization

Protection
- Radiation protection to the physician
- Potential to reduce long-term orthopedic issues

17%
Radiation Reduction

8.3%
Stent Savings

95%
Radiation Reduction

Weisz, G. et al. Safety and Feasibility of Robotic Percutaneous Coronary Intervention: PRECISE Study. J Am Coll Cardiol. 2013;61(15):1596-1600. PRECISE Trial was conducted with the CorPath 200 System. Clinical trials were conducted using the CorPath 200 System.
CorPath Technology Evolution

Generational improvements will fuel growth

GEN 1
LEARN
Protect Physician

- 45 Systems Placed
- Demonstrated safety & efficacy
- Significant reduction in physician radiation exposure
- Precise robotic movement
- 25-50% of cases could be done with system

GEN 2
BUILD
Enhance Physician’s Skills

- Increased speed and efficiency*
- More physician control*
- Enhanced visualization for improved accuracy*
- Can perform more complex cases*
- Software enhancements for Advanced Device Manipulation planned
- 80-90% of cases can be done with system

GEN 3
SCALE
Do Things Physician Can’t Do Manually

- Remote Telestenting capabilities to rural areas globally
- Auto Navigation of devices for increased throughput
- Digital data algorithms to reduce variation of care
- Machine learnings

* Compared to the CorPath 200 System
The Next Generation is Here
CorPath GRX System

IMPROVED WORKFLOW FOR BEDSIDE USER*

- Extended reach arm
- Bedside touchscreen for step-by-step instructions

INCREASED PROCEDURAL CONTROL FOR PHYSICIAN*

- Active Guide Catheter Management
- 40” Power Vision Monitor

* Compared to the CorPath 200 System
Building Robust Robotic Programs
Driving strategic growth

Commercial Focus on Developing New Programs and Growing Adoption

- **Team Approach**
 - Physicians, techs, nurses and administration

- **Commitment to Building a Program**
 - Buy in from all stakeholders

- **Ongoing Training**
 - Basic, intermediate and advanced

- **Adequate Procedural Volume**
 - Support multiple users
Addressing Healthcare Challenges

Overdue paradigm shift into the digital age

- Safer Work Environment
- Reduce Cost
- Expand Access To Care
- Improve Efficiency
- Enhance Quality
Future of Cardiovascular Robotics
The only platform for advanced capabilities

Planned features aimed at improving workflow, expanding access, and reducing variability of care.

Advanced Device Manipulation
Expanded compatibility, precise actuation, multiple device control, quick exchange.

Robotic-Assisted Procedures
Automated wire techniques scaled to full auto-navigation of wires and catheters.

Remote Capabilities
Tele-treatment capabilities spanning from remote case proctoring to remote catheterization.

Prescriptive Analytics
Algorithms to guide peri-procedure lesion assessment, treatment plan, and device selection.
Technology Enablers

Third-party technologies that compliment robotics

<table>
<thead>
<tr>
<th>Advanced Imaging</th>
<th>Data Integration</th>
<th>Autonomous</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Image Reconstruction</td>
<td>Machine Learnings</td>
<td>Sensors</td>
<td>Advancement of 5G</td>
</tr>
<tr>
<td>CT Fractional Flow Reserve (FFR)</td>
<td>Descriptive and Prescriptive Data</td>
<td>Mapping</td>
<td>Security Solutions</td>
</tr>
<tr>
<td>Angiographic FFR</td>
<td>Algorithms</td>
<td>Closed Loop Movement</td>
<td>Latency Solutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No Geographic Boundaries</td>
</tr>
</tbody>
</table>
Telestenting First-in-Human Study

REMOTE-PCI

REMOTE-PCI Study explored feasibility of remote telestenting using a robotic system

- Single-center prospective observational study performed at Spectrum Health, Grand Rapids, MI
- 20 patients treated via physician at remote cockpit leveraging telehealth technology
- Study showed 86.4% technical success and 95% procedural success

Madder R, et al. “Percutaneous coronary intervention using a combination of robotics and telecommunications by an operator in a separate physical location from the patient: an early exploration into the feasibility of telestenting (the REMOTE-PCI study).” Eurointervention, 2017;12:1569-1576. This study, conducted under local IRB, may involve off-label usage and was not sponsored by Corindus.
CorPath 200 and CorPath GRX Systems are indicated for PCI. Only the CorPath 200 System is indicated for use in peripheral vascular interventions. CorPath Systems are not indicated for use in neuro or structural interventions.
Strategic Objectives

Corindus Vascular Robotics

Near Term

- Establish at least 25 new robotic programs
- Pursue co-development opportunities, add at least one additional collaboration
- Drive system utilization
- Prepare Japan distributor for launch
- Ramp up educational and training opportunities for physicians
- Further clinical trial development

Mid to Long Term

- Recurring revenue streams and NG3 system launch
- Expansion into additional disease states (neurovascular and structural heart)
- Global expansion and remote tele-proctoring, with specific focus on China
Key Financial Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and Cash Equivalents</td>
<td>$9.2 million</td>
</tr>
<tr>
<td>Debt</td>
<td>$4.7 million</td>
</tr>
<tr>
<td>Basic Shares Outstanding</td>
<td>119,025,221</td>
</tr>
</tbody>
</table>

Guidance

<table>
<thead>
<tr>
<th>Year</th>
<th>Robotic Programs</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Establish at least 25 new robotic programs</td>
<td>$13 - $15 million⁴</td>
</tr>
</tbody>
</table>

¹ As of December 31, 2016
² As of September 30, 2016
³ Outstanding principal balance
⁴ Per our press release filed on January 17, 2017
Corindus Vascular Robotics, Inc. is a global technology leader in robotic-assisted vascular interventions. The company's CorPath® System is the first FDA-cleared medical device to bring robotic-assisted precision to percutaneous coronary interventions. With the CorPath System, Corindus Vascular Robotics brings robotic precision to interventional procedures to help optimize clinical outcomes and minimize the costs associated with complications of improper stent placement with manual procedures.

Visit us at www.corindus.com