1. Based on V-Go® net price $6.5 x 360 days x 12 months x 4.5M Patients with Type 2 Diabetes on Insulin not at goal.

MDI = Multiple daily injections, T2DM = Type 2 diabetes mellitus
Basal & Mealtime Insulin Needed to Achieve or Maintain Glycemic Control

Mean 24-hour CGM sensor glucose profiles

N=53 without diabetes and N=56 with T2DM

Basal insulin has a flat insulin profiles and is not designed to cover glucose excursions from meals

Continued upward titration of basal insulin glargine to doses > 0.5, > 0.7 and even > 1.0 U/kg does not appear to result in further improvements in glycemic control

Goal of Insulin Therapy: Mimic Physiologic Insulin Secretion

- Mean Plasma Levels of Insulin During 24-Hour Period

- Without diabetes
- With type 2 diabetes

~82% of Patients with Type 2 Diabetes Initiated on Basal-Only Insulin Regimens Required the Addition of Mealtime Insulin

Non-adherence to Insulin is Associated with Poor Glycemic Control1

Common barriers contributing to non-adherence2

- Impact to daily living
- Injection embarrassment & pain
- Number of injections

\textbf{28\%}

\textbf{72\%}

\textit{72\% of patients prescribed ≥ 3 shots/day reported they do not inject insulin away from home}5

\textbf{72.5\%}

of physicians report patients not administering insulin as prescribed3

V-Go® Addresses Physicians’ Greatest Concerns

Based on market research conducted in October, 2016, n=102, Doctors ranked their Top 5 Challenges and separately the Greatest Benefits from V-Go

Greatest Challenges that my T2DM Patients on MDI Face

- Having to inject multiple times/day
- Remembering to take insulin
- Needing to test blood glucose
- Having to inject outside their home
- Hypoglycemia
- Required to carry pens/syringes

Highest Rated Benefits of V-Go

- Reduces multiple daily injections
- No need to carry insulin and needles
- Only need to use one type of insulin
- Allows discreet mealtime dosing
- Easy to remember to take meal time insulin
- Easy to learn how to use

MDI – Multiple Daily Injections of insulin, T2DM- Type 2 Diabetes Mellitus

Based on market research conducted in October, 2016, n=102, Doctors ranked their Top 5 Challenges and separately the Greatest Benefits from V-Go
Insulin works........if the Patient Takes it as Prescribed

When taken, insulin is the most potent agent available to treat hyperglycemia\(^1\)

Barriers to Multiple Daily Injections
- Complex regimen
- Inconvenient to dose
- Too many injections
- Pain/anxiety to inject

Decreases Adherence

Increases Adherence
- Simple to use
- Discreet
- 1 Application/day
- Convenient

Basal-Bolus therapy with V-Go\(^{\circledR}\)

Adherence Impacts Efficacy\(^2\)

Simplify Basal-Bolus Insulin Therapy with V-Go®

Basal-Bolus therapy with MDI requires a long or intermediate acting insulin plus a short or rapid acting insulin and typically 4 injections/day.

Basal-Bolus therapy with V-Go requires only a rapid acting insulin and 1 application/day.

*Injections may vary

Continuous infusion and on-demand bolus dosing

Conceptual depiction of basal-bolus therapy delivery options © 2019, Valeritas, Inc.
Demonstrated Statistically Significant Improvements in A1c\(^1\text{-}^{11}\)

Improved Diabetes Management Performance Measures\(^4\),\(^7\),\(^9\),\(^10\),\(^11\)

Lowered Total Daily Dose of Insulin (Prescribed / Administered)\(^1\text{-}^{11}\)

Demonstrated Cost Savings Compared to Baseline or Other Insulin Regimens\(^4\),\(^6\text{-}^{8}\),\(^11\)

14 Published Clinical Papers

>1,500 V-Go\(^\circledast\) Patients Studied

60 Presentations at National Conferences

Robust Clinical Data

Demonstrated Ability of V-Go® to Deliver Clinically Relevant Reductions in A1c with Less Insulin

<table>
<thead>
<tr>
<th>Baseline Insulin Dose U/day: V-GoAL-71, SIMPLE-62, VALIDATE 1-99, EVIDENT-67, IMPROVE-84, Jones-76, KAISER-72, UMASS-119, MOTIV-144 and ENABLE-76</th>
<th>V-GoAL(^1)</th>
<th>SIMPLE(^2)</th>
<th>VALIDATE 1(^3)</th>
<th>EVIDENT(^4)</th>
<th>IMPROVE(^5)</th>
<th>JONES(^6)</th>
<th>KAISER(^7)</th>
<th>UMASS(^8)</th>
<th>MOTIV(^9)</th>
<th>ENABLE(^10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>9.9%</td>
<td>8.8%</td>
<td>9.6%</td>
<td>9.6%</td>
<td>9.8%</td>
<td>9.1%</td>
<td>9.8%</td>
<td>10.7%</td>
<td>8.7%</td>
<td>9.2%</td>
</tr>
<tr>
<td>N=169</td>
<td>N=87</td>
<td>N=204</td>
<td>N=85</td>
<td>N=103</td>
<td>N=69</td>
<td>N=60</td>
<td>N=14</td>
<td>N=15</td>
<td>N=283</td>
<td></td>
</tr>
<tr>
<td>V-Go Duration</td>
<td>3 to 4 months</td>
<td>3 months</td>
<td>7 months</td>
<td>8 months</td>
<td>14 months</td>
<td>Up to 1 yr</td>
<td>3 months</td>
<td>3 months</td>
<td>4 months</td>
<td>7 months</td>
</tr>
<tr>
<td>Change in A1c(^\dagger)</td>
<td>-1.0</td>
<td>-0.7</td>
<td>-1.8</td>
<td>-1.4</td>
<td>-1.7</td>
<td>-0.8</td>
<td>-1.3</td>
<td>-2.4</td>
<td>-1.6</td>
<td>-1.0</td>
</tr>
<tr>
<td>Insulin Decrease</td>
<td>▼ 24%</td>
<td>▼ 18%</td>
<td>▼ 41%(^\dagger)</td>
<td>▼ 6%</td>
<td>▼ 20%</td>
<td>▼ 20%</td>
<td>▼ 34%</td>
<td>▼ 46%</td>
<td>▼ 58%</td>
<td>▼ 18%</td>
</tr>
</tbody>
</table>

\(^\dagger\)Change in A1c based on mean V-Go Duration rounded to the nearest month. Protocol for V-GoAL study specified end of study A1c as 3 months (+30 days) from baseline. Duration for JONES study varied by patient with up to 1 year of V-Go use.

\(^\dagger\)Insulin change reported based on comparison to prescribed upper limit at baseline.
Regardless of Insulin Starting Point, V-Go® has Resulted in Clinical Benefit

Patients Switched to V-Go Significantly Lowered their A1c with ~55 U/day

> 80% of Patients in U.S. with T2DM on insulin are Prescribed ≤ 150 U/day of Insulin

<table>
<thead>
<tr>
<th>Study</th>
<th>UPP6</th>
<th>SIMPLE1</th>
<th>EVIDENT3</th>
<th>Jones5</th>
<th>IMPROVE4</th>
<th>VALIDATE 12</th>
<th>UMASS7</th>
<th>VALIDATE 19</th>
<th>MOTIV8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max dose</td>
<td>86</td>
<td>NR</td>
<td>200</td>
<td>NR</td>
<td>200</td>
<td>310</td>
<td>300</td>
<td>280</td>
<td>292</td>
</tr>
<tr>
<td>Mean dose</td>
<td>49</td>
<td>62</td>
<td>69</td>
<td>76</td>
<td>84</td>
<td>99</td>
<td>119</td>
<td>143</td>
<td>144</td>
</tr>
<tr>
<td>Min dose</td>
<td>25</td>
<td>NR</td>
<td>10</td>
<td>NR</td>
<td>10</td>
<td>16</td>
<td>34</td>
<td>100</td>
<td>45</td>
</tr>
</tbody>
</table>

NR= Not reported, T2DM= Type 2 Diabetes Mellitus

V-Go has consistently shown improvements in A1c using less insulin

43 to 70 U
Mean Range
On V-Go
Across Studies1-9
V-Go® Demonstrated Reduction in Glucose at 14 Months

Switched to V-Go
- All Patients (N=103)
- All Patients Previously on Insulin (n=80)
- Patients Previously on Basal-Bolus MDI (n=58)

Change in A1c

Baseline | 2 Months | 6 Months | 10 Months | 14 Months

0.0 | -1.3* | -1.5* | -1.3* | -1.5*
-0.4 | -1.2 | -1.4* | -1.6 | -1.7*
-0.8 | -1.0 | -1.5* | -1.7* | -1.8
-1.2 | -1.6 | -1.8 | -1.9 | -2.0

*P<0.001
Baseline A1c: All: 9.80%, All Insulin: 9.79%, MDI: 9.73%
Insulin cohort includes patients prescribed: basal-only, basal-bolus, premix or prandial-only at baseline
MDI=Multiple Daily Injections
Sutton, D. et al. Advances in Therapy. May 2018
V-Go® Offers Efficient Delivery for Improved Glycemic Control

V-Go Demonstrated Significant Reductions in A1c and Insulin
For Patients with Type 2 Diabetes Compared to Pen Therapy

Mean Change in A1c On V-Go

3 Months 7 Months
-1.04* -1.11*

Mean Change in Insulin (units/day) On V-Go

3 Months 7 Months
-25* -24*
-14* -13*
-11* -10*

N=148, Mean Baseline A1c 9.1%, insulin basal, prandial and total U/Day were 47, 35 and 82, respectively
*p<0.0001 compared to baseline
TDD= Total daily dose of insulin. Change in insulin is rounded to the nearest whole number
V-Go® Improves Glycemic Control and Reduces Prescribed Insulin

Fasting Plasma Glucose (FPG) reductions based on patients with baseline FPG measurements and corresponding basal insulin dosage (n=67). A1c reductions based on patients on insulin at baseline (n=180) compared to V-Go insulin total daily dose. Lower limit represents the primary dose excluding titration and correction, and the upper limit allows additional units to optimize insulin therapy (titration, correction, sliding scale) as prescribed.

*p<0.001 compared to baseline lower limit prescribed dose.

Simple Titration Approach Significantly Lowered A1c

Use of a weekly physician-driven mealtime dosing titration approach with patients with Type 2 Diabetes uncontrolled on prior regimens

A1c (%)

<table>
<thead>
<tr>
<th>Before V-Go</th>
<th>On V-Go (4 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7</td>
<td>7.1*</td>
</tr>
</tbody>
</table>

Insulin Dose (Units)

<table>
<thead>
<tr>
<th>Before V-Go</th>
<th>On V-Go (4 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>60*</td>
</tr>
</tbody>
</table>

A1c Goal Achievement

- Before V-Go:
 - <7%: 13%
 - <8%: 40%
 - <9%: 67%
- On V-Go:
 - <7%: 47%
 - <8%: 87%
 - <9%: 100%

Hypoglycemia (very low blood glucose) was reported in 23% of patients at baseline and 7% of patients at 4 months.

Source: Texas Health Resources. MOTIV (Managing Optimization and Titration of Insulin Delivery with V-Go) Retrospective Study

TDD=Total daily dose of insulin *Significant compared to baseline N=15

Clinical Benefit Realized with V-Go®

Switching Patients from Prior Insulin Injections to V-Go Resulted in Improved A1c and Less Insulin Regardless of Baseline Insulin Regimen or Dose

All Patients Switched to V-Go¹

- Mean Change in A1c (%)
 -1.0

- Insulin TDD (units/day)
 Decreased 18%†
 Mean 76 U/day to 62 U/day*

Patients with High Dose MDI Switched to V-Go²

(MDI Patients Prescribed between 90-300 U/day)

- Mean Change in A1c (%)
 -1.2

- Insulin TDD (units/day)
 Decreased 47%†
 Mean 134 U/day to 71 U/day*

*P<0.0001 compared to baseline
†After 7 months of V-Go use. Duration rounded to month
All patients N=283 from regimens of basal-only, basal-bolus, premix and other combinations. Baseline A1c: 9.2% and 46% of patients defined at high risk which was reduced to 24% by end of observation.
High Dose MDI patients N=63 from basal-bolus regimens with prescribed doses between 90 and 300 U/day. Baseline A1c: 9.3%.
MDI= Multiple Daily Injections, TDD=Total Daily Dose of Insulin.
V-Go®: Improved A1c Control with Less Insulin

A prospective study of 415 patients showed V-Go superiority vs. Standard Treatment Optimization (STO)\(^1\)

Greater Improvement in A1c\(^2\)

<table>
<thead>
<tr>
<th>V-Go</th>
<th>STO</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=169</td>
<td>n=246</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in A1c (%)</th>
<th>(-0.95^{*+})</th>
<th>(-0.46^{*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0.0018</td>
<td>0.0018</td>
</tr>
</tbody>
</table>

N= 415 patients across 52 Sites with duration of up to 4 months

Less Insulin Used & More Cost Effective

29% Less Insulin with V-Go vs STO at 4 months (54 vs 72 u/day) \(P<0.001\)

V-Go $24.48 vs STO $39.95 per patient per day for each 1% drop in A1c\(^3\)

1 Study conducted by HealthCore, Inc., an outcomes research subsidiary of Anthem, Inc.
2 STO included patents currently using insulin therapy with a total daily dose of 30 U to 120 U/day and treated using standard of care by their physician, without forced or mandated protocols or titration regimens.
3 *Significant compared to baseline. \(^+\)Significant between groups. Statistical significance between groups was maintained when adjusted for imbalance in baseline A1c (data on file).
4 Change in A1c (\%): V-Go 9.88 and STO 9.34. Baseline total daily insulin dose (u/day): V-Go 71 and STO 72.
5 Baseline A1c (%): V-Go 9.88 and STO 9.34. Baseline total daily insulin dose (u/day): V-Go 71 and STO 72.
6 As measured by A1c levels
7 Cost includes the WAC cost for all diabetes treatments and medications and based on per patient/day (PPPD) at study end.
8 The cost is calculated as the sum of published price of insulin, device and concomitant medications.
V-Go® Demonstrated Clinical Benefits in Patients with T2DM

Switched from Basal-Bolus (MDI)

Baseline 9.3%

Change in A1c

-1.2*

Insulin TDD (units)

Baseline

115

On V-Go

62*

n=70 (all patients with two follow-up A1c values for a mean duration of 7 months)
*p<0.0001 compared to baseline
MDI=Multiple Daily Injections, TDD= Total Daily Dose of Insulin, T2DM= Type 2 Diabetes Mellitus

V-Go® Demonstrated Clinical Benefits in Patients with T2DM

Switched from Basal-Only Regimen

Significant reduction in A1c by reducing the basal dose and adding meal time insulin with simple clicks of V-Go

n=47 (all patients with two follow-up A1c values for a mean duration of 7 months)
*p<0.0001 compared to baseline
TDD= Total Daily Dose of Insulin, T2DM= Type 2 Diabetes Mellitus

V-Go® Benefits a Wide Range of Patients

Baseline N= 86, 45, 22, respectively
Data are means
*P<0.0001 vs baseline

Baseline A1c= 9.2%
Baseline A1c= 9.6%
Baseline A1c= 11.2%

Lajara R, Nikkel C. Poster presented at: AACE 24th Annual Scientific and Clinical Congress; May 2015; Nashville, TN.
V-Go® Demonstrates Clinical Benefits Across All Types of Diabetes

Lajara R, et al. Diabetes Therapy. 2015 and data on file

*p<0.001 compared to baseline
†Total daily dose (TDD) based on upper limit of prescribed insulin

Patients naive to insulin reduced A1c by 3.4%

VALIDATE 1 Study

Mean Insulin TDD†
Baseline: 99 U
V-Go: 58 U*
Baseline: 98 U
V-Go: 59 U*
Baseline: 104 U
V-Go: 51 U*

LSM Change in A1c
All Patients (N=204)
Baseline 9.63%
14 week 27 week
Type 2 (n=175)
Baseline 9.65%
14 week 27 week
Type 1/LADA (n=29)
Baseline 9.48%
14 week 27 week
V-Go® Improved A1c Control Regardless of Baseline Insulin Dose

After 6 months of using V-Go for Insulin Delivery

Change in A1c

<table>
<thead>
<tr>
<th>Baseline Insulin Dose</th>
<th>Baseline A1c</th>
<th>Change in A1c</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100 U/day at Baseline</td>
<td>9.3%</td>
<td>-1.5*</td>
</tr>
<tr>
<td>≥ 100 U/day at Baseline</td>
<td>9.5%</td>
<td>-1.7*</td>
</tr>
</tbody>
</table>

Baseline 9.3%
Baseline 9.5%

Insulin TDD (U/day)

<table>
<thead>
<tr>
<th>Baseline Insulin Dose</th>
<th>Baseline Insulin TDD</th>
<th>On V-Go Insulin TDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100 U/day at Baseline</td>
<td>62</td>
<td>54†</td>
</tr>
<tr>
<td>≥ 100 U/day at Baseline</td>
<td>143</td>
<td>67*</td>
</tr>
</tbody>
</table>

N= 66 patients < 100 U/day at baseline and 38 patients ≥ 100 U/day at baseline
*p<0.0001 compared to baseline at 6 months, †P<0.05 compared to baseline at 6 months

VALIDATE 1 Study
Patients at High Risk (A1c > 9%) Benefit from V-Go® Use

V-Go Resulted in Clinical and Economic Benefits

-2.0*

Baseline 10.5%

High-Risk Population

<table>
<thead>
<tr>
<th>Change in A1c</th>
<th>Baseline</th>
<th>On V-Go</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>99</td>
<td>60*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insulin TDD (units)</th>
<th>Baseline</th>
<th>On V-Go</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>99</td>
<td>60*</td>
</tr>
</tbody>
</table>

N=97 All patients were previously on basal (37%) or basal-bolus (63%) insulin injections
*p<0.001 at 3 months compared to baseline

Quality Measures

71%
Achieved A1C ≤ 9.0% after switching to V-Go

Direct Pharmacy Savings to Plan†
$119/mo/patient

VALIDATE 1 Study

* Savings are based on WAC pricing and calculated from subtracting total diabetes-related mean costs on V-Go from the baseline diabetes-related mean costs before V-Go for each group. Savings represented in US dollars and rounding was applied. Based on WAC=Wholesale Acquisition Cost.

V-Go® Improved Glycemic Control with Less Insulin

A1c data are arithmetic means at baseline (week 0) compared to first (14 week mean) and second (27 week mean) recorded A1c values on V-Go. Curves represent the A1c distribution of patients for each time point based on available data.

By 27 weeks, 32 patients had discontinued V-Go and 35 patients had not returned for a 2nd follow-up appointment.

†Insulin decrease at 27 weeks on V-Go compared to upper limit of baseline prescribed dose (p<0.001)

A1c Lowering with a 41% Decrease† in Insulin with V-Go (99 to 58 U/day at 27 weeks)
V-Go® Demonstrated Significantly Greater Improvements In Glycemic Control vs Multiple Daily Injections (MDI)

Better Control with Less Insulin vs MDI

![Graph showing A1c levels over time for V-Go and MDI](image)

A1c (%)

- **Baseline:** 9.5%
- **12 week:** 8.4%
- **27 week:** 8.1%

V-Go

- **Baseline:** 7.7%
- **12 week:** 7.7%
- **27 week:** 7.6%

MDI

- **Baseline:** 9.4%
- **12 week:** 8.4%
- **27 week:** 8.1%

TDD (U/day) at 27 weeks

- **V-Go:** 51 units
- **MDI:** 46 units

Data are mean (SE)

V-Go® is More Cost-Effective for Basal-Bolus Therapy Compared to Multiple Daily Injections (MDI)

- **V-Go**
 - Mean Baseline: 9.5%
 - LSM Change in A1c: -1.98%

- **MDI**
 - Mean Baseline: 9.4%
 - LSM Change in A1c: -1.34%

LSM Change in A1c at 27 weeks

- **V-Go**
 - Change in Direct Pharmacy Cost per 1% reduction in A1c: $118.8

- **MDI**
 - Change in Direct Pharmacy Cost per 1% reduction in A1c: $217.1

- **$98.32** (†p=0.013)

Insulin costs include both the insulin and associated delivery method. The costs of insulin were normalized by calculating a 30 day insulin requirement based on the total prescribed daily insulin dose for each insulin and multiplying the monthly dose in units by the unit cost. Only branded antihyperglycemic agents were included in total therapy costs. All pricing based on published wholesale acquisition costs in 2015 U.S. dollars as of 9/1/2015.

Patients Intensified to Basal-Bolus from Basal Insulin Required Less Insulin with V-Go® vs MDI

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>12 weeks</th>
<th>27 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-Go (U/day)</td>
<td>51</td>
<td>56</td>
<td>56†</td>
</tr>
<tr>
<td>MDI (U/day)</td>
<td>46</td>
<td>75*</td>
<td>78*</td>
</tr>
</tbody>
</table>

* \(p < 0.001 \) vs baseline.
† \(p < 0.0001 \) vs MDI at 27 weeks

N=116
MDI=Multiple Daily Injections

V-Go® Demonstrated Improvements in A1c and Reductions in Insulin

<table>
<thead>
<tr>
<th>Mean Change in A1c</th>
<th>15 Weeks</th>
<th>34 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>On V-Go</td>
<td>-1.4*</td>
<td>-1.4*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insulin TDD Utilization</th>
<th>Pre V-Go</th>
<th>On V-Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean TDD (U/day)</td>
<td>67</td>
<td>57†</td>
</tr>
<tr>
<td>Baseline</td>
<td>59†</td>
<td>62</td>
</tr>
<tr>
<td>Range (10 to 200 U)</td>
<td>57†</td>
<td>62</td>
</tr>
<tr>
<td>V-Go Initiation</td>
<td>15 Weeks</td>
<td>34 weeks</td>
</tr>
</tbody>
</table>

Pre V-Go Insulin Regimens included from 1 to 5 injections/day

*p<0.0001 compared to baseline †p=0.006 compared to baseline
N=103 at 15 weeks with a baseline A1c of 9.6% and N=84 at 34 weeks with a baseline A1c of 9.7%.

Harrison C, et al. Poster presented at the AACE 26rd Annual Scientific and Clinical Congress. May 2017; Austin, TX

EVIDENT Study
Switching to V-Go® Demonstrated Significant Clinical Benefits

In Patients on ≥ 2 Insulin Injections/Day

Mean Change in A1c

<table>
<thead>
<tr>
<th>Change in A1c</th>
<th>On V-Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Weeks</td>
<td>-1.3*</td>
</tr>
<tr>
<td>34 weeks</td>
<td>-1.4*</td>
</tr>
</tbody>
</table>

Pre V-Go Insulin Regimens included 2 or more injections/day

* p<0.0001 compared to baseline † p=0.007 compared to baseline
N=88 at 15 weeks with a baseline A1c of 9.6% and N=71 at 34 weeks with a baseline A1c of 9.6%.

Harrison C, et al. Poster presented at the AACE 26rd Annual Scientific and Clinical Congress. May 2017; Austin, TX
V-Go® Improved A1c Control Regardless of Baseline Insulin Dose

- **≤ 50 U at Baseline**: Basal to Bolus Ratio: 83% to 17%
 - Mean Change in A1c: -1.5*

- **51 to 75 U at Baseline**: Basal to Bolus Ratio: 69% to 31%
 - Mean Change in A1c: 1.3*

- **> 75 U at Baseline**: Basal to Bolus Ratio: 60% to 40%
 - Mean Change in A1c: 1.4*

* +14 U/day*
37.4 to 51.6 U/day
Basal to Bolus Ratio: 54% to 46%

* -3 U/day
62.5 to 59.3 U/day
Basal to Bolus Ratio: 54% to 46%

* -23 U/day*
98.2 to 74.8 U/day
Basal to Bolus Ratio: 53% to 47%

*p<0.0001 compared to baseline

N= 84 (29, 24, 31 respectively after a mean of 34 weeks on V-Go with baseline A1cs of 9.7, 9.3 and 9.9% respectively).

Harrison C, et al. Poster presented at the AACE 26rd Annual Scientific and Clinical Congress. May 2017; Austin, TX
Glycemic Targets Achieved in the Majority of Patients with V-Go® using Less Insulin

A sub analysis to evaluate the % of patients with uncontrolled type 2 diabetes (A1c > 8%) who achieved an A1c < 8% and/or a reduction in A1c of ≥ 1% after being switched from conventional insulin delivery (syringe or pen device) to V-Go® wearable insulin delivery.

70% of patients achieved an A1c < 8% and/or a ≥ 1% A1c reduction

After a mean of 15 weeks of V-Go use

N=89, baseline A1c 9.9%
†p=0.04 compared to baseline

Harrison C, et al. Poster presented at the AACE 26rd Annual Scientific and Clinical Congress. May 2017; Austin, TX
V-Go® Offers Clinical Benefits when Switching from MDI

N=86
MDI=Multiple Daily Injections
*p<0.0001 compared to baseline regimen of MDI
Mean duration on V-Go: 29 weeks

Lajara R, et al. Poster presented at the 22nd Annual ISPOR Meeting, May 2017; Boston, MA
In 66% of Patients Both A1c Improved and Insulin was Reduced when Switched from MDI to V-Go®

Relationship between Change in A1c and Change in TDD on V-Go

N=86 patients, each dot represents a patient

Lajara R, et al. Poster presented at the 22nd Annual ISPOR Meeting, May 2017; Boston, MA
Switching Patients from MDI to V-Go® Resulted in a Direct Pharmacy Cost Savings to the Plan

<table>
<thead>
<tr>
<th>Direct Pharmacy Costs Per Patient Per Month (PPPM)</th>
<th>On MDI</th>
<th>On V-Go</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=86</td>
<td>N=86</td>
</tr>
<tr>
<td>Prescribed insulin costs PPPM</td>
<td>$888.00</td>
<td>$471.00</td>
</tr>
<tr>
<td>Pen needles/syringes/V-Go costs PPPM</td>
<td>$37.00</td>
<td>$308.00†</td>
</tr>
<tr>
<td>Total insulin therapy costs PPPM</td>
<td>$925.00</td>
<td>$779.00</td>
</tr>
<tr>
<td>Savings with V-Go (per patient/month)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Savings with V-Go (per patient/quarter)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projected Savings with V-Go (per patient/year)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p=0.001
MDI=Multiple Daily Injections, PPPM=Per Patient Per Month
Data are means and rounded to the dollar.
Average monthly costs are normalized to 30 days and based on calculated costs for basal and/or prandial units/day based on average market leaders unit pricing. MDI pen needles and/or syringes (4 per day) based on market leader average unit pricing.
Concomitant antihyperglycemic non-insulin agents not included.
†Average cost inclusive of V-Go and pen needles for patients administering supplemental insulin

Lajara R, et al. Poster presented at the 22nd Annual ISPOR Meeting, May 2017; Boston, MA
V-Go® Significantly Reduced A1c with Less Insulin

Key Benefit to Both Patients and Payors

<table>
<thead>
<tr>
<th>A1c (%)</th>
<th>Pre V-Go</th>
<th>On V-Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7</td>
<td>8.3*</td>
<td></td>
</tr>
</tbody>
</table>

Change: -2.4

<table>
<thead>
<tr>
<th>Insulin TDD (units)</th>
<th>Pre V-Go</th>
<th>On V-Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>64†</td>
<td></td>
</tr>
</tbody>
</table>

Change: -55U, 46%

N=14 Average Duration = 88 days

†p=0.01, *p=0.001

1Based on Insulin TDD absolute units

A retrospective clinical chart review was conducted in a subset of patients to assess the change in A1c and insulin dosing with V-Go and after discontinuation of V-Go. This chart review occurred after the completion of a prospective study designed to gather patient and HCP feedback in patients prescribed insulin initiated on V-Go.

N=23
A1c- *p=0.002 vs “Before V-Go”, †p=0.011 vs “With V-Go”
This V-Go study was conducted prior to FDA filing, therefore following the study, all patients had to resume insulin delivery via pens/syringes.
Patients prescribed an insulin therapy providing fasting and mealtime coverage: Before V-Go- 57%, With V-Go- 100%, After V-Go-74%
Insulin- No statistical analysis available.

V-Go®: Insulin Delivery Matters

Better Glucose Profile, Similar Insulin Dose- Optimizing Insulin Delivery Matters

Basal-Bolus MDI TDD at baseline:
Degludec 30 U/day + Lispro 15 U/day = 45 U TDD

<table>
<thead>
<tr>
<th>Estimated A1c</th>
<th>7.6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time in Range, %</td>
<td>27</td>
</tr>
</tbody>
</table>

V-Go Regimen:
V-Go 20 basal rate + 26 bolus U/day = 46 U TDD

<table>
<thead>
<tr>
<th>Estimated A1c</th>
<th>6.9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time in Range, %</td>
<td>44</td>
</tr>
</tbody>
</table>

MDI= Multiple Daily Injections; TDD= Total Daily Dose

Parikh S, et al. AACE 27th Annual Scientific and Clinical Congress; May 2018; Boston, MA.
V-Go®: The Right Amount of Insulin at the Right Time

Better Glucose Profile, Less Insulin- The Right Amount of Insulin at the Right Time

Basal-Bolus MDI TDD at baseline:
Glargine (U-300) 50 U/day + Lispro 45 U/day = 95 U TDD

<table>
<thead>
<tr>
<th>Estimated A1c</th>
<th>9.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time in Range, %</td>
<td>16</td>
</tr>
</tbody>
</table>

V-Go Regimen:
V-Go 20 basal rate + 20 bolus U/day = 40 U TDD

<table>
<thead>
<tr>
<th>Estimated A1c</th>
<th>6.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time in Range, %</td>
<td>46</td>
</tr>
</tbody>
</table>

MDI= Multiple Daily Injections; TDD= Total Daily Dose
Parikh S, et al. AACE 27th Annual Scientific and Clinical Congress; May 2018; Boston, MA.