ASCO Investor Event

June 5, 2023
This presentation of Merck & Co., Inc., Rahway, N.J., USA (the “company”) includes “forward-looking statements” within the meaning of the safe harbor provisions of the U.S. Private Securities Litigation Reform Act of 1995. These statements are based upon the current beliefs and expectations of the company’s management and are subject to significant risks and uncertainties. There can be no guarantees with respect to pipeline candidates that the candidates will receive the necessary regulatory approvals or that they will prove to be commercially successful. If underlying assumptions prove inaccurate or risks or uncertainties materialize, actual results may differ materially from those set forth in the forward-looking statements.

Risks and uncertainties include but are not limited to, general industry conditions and competition; general economic factors, including interest rate and currency exchange rate fluctuations; the impact of the global outbreak of novel coronavirus disease (COVID-19); the impact of pharmaceutical industry regulation and health care legislation in the United States and internationally; global trends toward health care cost containment; technological advances, new products and patents attained by competitors; challenges inherent in new product development, including obtaining regulatory approval; the company’s ability to accurately predict future market conditions; manufacturing difficulties or delays; financial instability of international economies and sovereign risk; dependence on the effectiveness of the company’s patents and other protections for innovative products; and the exposure to litigation, including patent litigation, and/or regulatory actions.

The company undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events or otherwise. Additional factors that could cause results to differ materially from those described in the forward-looking statements can be found in the company’s Annual Report on Form 10-K for the year ended December 31, 2022 and the company’s other filings with the Securities and Exchange Commission (SEC) available at the SEC’s Internet site (www.sec.gov).
Opening Remarks

Dr. Dean Li
President, Merck Research Laboratories
Agenda

Dr. Dean Li
President, Merck Research Laboratories

Dr. Eliav Barr
SVP, Head of Global Clinical Development & Chief Medical Officer

Dr. Gregory Lubiniecki
VP, Late Oncology Development

Dr. Marjorie Green
SVP, Head of Late Oncology Development

Chirfi Guindo
Chief Marketing Officer, Human Health

Opening Remarks | Dr. Dean Li
Strategy & Progress | Dr. Eliav Barr
Earlier Stage Lung Cancer | Dr. Gregory Lubiniecki
Select Late-Phase Programs | Dr. Marjorie Green
Commercial Update | Chirfi Guindo
Closing Remarks | Dr. Dean Li
Q&A | All with Dr. Gursel Aktan and Dr. Scot Ebbinghaus
Strategy & Progress

Dr. Eliav Barr
SVP, Head of Global Clinical Development & Chief Medical Officer
Shaping the future of oncology with robust portfolio and pipeline

Immuno-oncology

Boost anti-tumor immune responses

<table>
<thead>
<tr>
<th>Drug</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEYTRUSA (pembrolizumab)</td>
<td>pembrolizumab (MK-7684A) anti-TIGIT</td>
</tr>
<tr>
<td>vibostolimab/pembro (MK-7684A)</td>
<td>anti-CTLA-4</td>
</tr>
<tr>
<td>quavonlimab/pembro (MK-1308A)</td>
<td>anti-CTLA-4</td>
</tr>
<tr>
<td>MK-4830</td>
<td>anti-ILT-3</td>
</tr>
<tr>
<td>MK-5890</td>
<td>CD27 agonist</td>
</tr>
</tbody>
</table>

Tissue Targeting

Increase cancer cell sensitivity with ADCs and immune-engagers

<table>
<thead>
<tr>
<th>Drug</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>favezelimab/pembro (MK-4280A)</td>
<td>anti-LAG-3</td>
</tr>
<tr>
<td>V940</td>
<td>Individualized Neoantigen Therapy</td>
</tr>
<tr>
<td>MK-0482</td>
<td>anti-ILT-3</td>
</tr>
<tr>
<td>MK-1484</td>
<td>IL-2 Rβγ</td>
</tr>
<tr>
<td>zilovertamab vedotin (MK-2140)</td>
<td>anti-ROR-1 ADC</td>
</tr>
<tr>
<td>MK-2870</td>
<td>anti-TROP-2 ADC</td>
</tr>
<tr>
<td>2 undisclosed ADCs in clinic</td>
<td></td>
</tr>
<tr>
<td>Bi-and tri-specific T & NK cell engagers</td>
<td></td>
</tr>
<tr>
<td>ladiratuzumab vedotin (MK-6440)</td>
<td>anti-LIV-1 ADC</td>
</tr>
<tr>
<td>6 undisclosed preclinical ADCs</td>
<td></td>
</tr>
</tbody>
</table>

Precision Molecular Targeting

Impact pathways that can drive cancer growth

<table>
<thead>
<tr>
<th>Drug</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynparza olaparib</td>
<td>Inhibitor of poly(ADP-ribose) polymerase (PARP)</td>
</tr>
<tr>
<td>WELIREG (belzutifan)</td>
<td>Dual VEGFR-2/Flt3 inhibitor</td>
</tr>
<tr>
<td>TUKYSA tucatinib</td>
<td>HER2 inhibitor with bi-specific T-cell engagement capabilities</td>
</tr>
<tr>
<td>nemtbrutinib (MK-1026)</td>
<td>BTK inhibitor</td>
</tr>
<tr>
<td>bomedemstat (MK-3543)</td>
<td>LSD1 inhibitor</td>
</tr>
<tr>
<td>MK-5684</td>
<td>CYP11A1 inhibitor</td>
</tr>
<tr>
<td>MK-1084</td>
<td>KRAS G12C inhibitor</td>
</tr>
<tr>
<td>MK-2870</td>
<td>anti-TROP-2 ADC</td>
</tr>
<tr>
<td>V940</td>
<td>anti-CTLA-4</td>
</tr>
<tr>
<td>MK-1484</td>
<td>IL-2 Rβγ</td>
</tr>
</tbody>
</table>

Structured process for advancing novel approaches to treating cancer and preventing certain HPV-related cancers

Development pathway for novel oncology mechanisms

- **Establish beachhead** as a monotherapy in metastatic disease
- **Expand** into new tumor types and **deepen** response with novel combinations in metastatic disease
- **Extend** to earlier stages of disease either as monotherapy or with novel combinations

Prevention of certain HPV-related cancers

1. Collaborations with Dragonfly and Janux
2. Collaboration with Orion
3. Collaboration with Eisai
4. Collaboration with AstraZeneca
5. Collaboration with Seagen
6. Collaboration with Moderna

Immuno-oncology

- Tissue Targeting
- Precision Molecular Targeting

Keytrak (pembrolizumab)

V940

IO/IO coformulations

Establish Beachhead

- as monotherapy in metastatic disease

Expand & Deepen

- to new tumor types & combinations

Extend

- to earlier stages of disease
Multifaceted pipeline in late stages of cancer comprised of diverse agents targeting multiple tumor types.

1. Late-stage refers to advanced inoperable or metastatic cancers. 2. Intend to initiate Phase 3 trial in 2023.

Compounds/Indications in or entering Phase 2/3 development by year end 2023. Compounds may reflect monotherapy, combination and coformulations.
Extensive ongoing clinical development program for earlier stages of cancer

Approximately 28,000 patients in >25 active Phase 3 trials in earlier stages of disease across more than 10 tumor types

1. Operable or potentially curable
2. Includes targeted number of enrolled patients based upon clinical trial design
3. Reflects ongoing trials including approved studies
4. Phase 2 trial

Esophageal
- KN-975

Head & Neck
- KN-689

Lung
- KN-091
- KV-006
- KL-012
- KN-671
- KN-867
- KL-013

Breast
- KN-522
- OLYMPIA
- KN-756

Liver
- KN-937
- LEAP-012

Gastric
- KN-585

Renal
- KN-564
- LITESPARK-022

Skin
- KN-054
- KN-629
- KN-716
- KN-630
- KV-010
- KN-942

Bladder
- KN-057
- KN-866
- KN-905
- KN-B15
- KN-676
- KN-123
- KN-992

Gynecological
- KN-A18 (CERVICAL)
- KN-B21 (ENDOMETRIAL)

Approved Indication (US)
Announced IA Results
Subcutaneous therapies intended to deliver several important benefits across key stakeholders

Subcutaneous program

MK-3475A: pembrolizumab + hyaluronidase

- Prioritizing coformulation based on potential benefits including:
 - Q3W and Q6W dosing flexibility
 - Decreased swelling and induration at the injection site
- Phase 3 trial in NSCLC in combination with chemotherapy ongoing (PCD: Sept 2024)

Potential benefits to stakeholders

Patients

- **Increased access, time savings** and may improve psychological and emotional impacts
- **Provide clinical benefits** with comparable efficacy and safety profiles to IV

Providers & Payors

- **Decreased capacity bottlenecks** by reducing patient time in the infusion center
- **Cost savings** by shortening physician and nurse time needed to administer product
- **Decreased health care costs and resources** with reduced provider administration time and potentially greater throughput
Seeking to identify optimal treatment options for patients

Advancements in precision medicine are helping to redefine how cancer is classified and treated

- Merck has 20 approved biomarker-driven indications, across products to help identify patients eligible for treatment
 - Including the MSI-H/dMMR and TMB-H solid tumor indications, the first approvals for an immunotherapy based on a predictive-biomarker, regardless of solid tumor type
- Evaluating predictive biomarkers across the pipeline, including TIGIT, ILT-4, ROR1 and LIV-1 targets and BTK, KRAS and TriNKET programs
- Developments in diagnostic techniques and technologies may support expediting, scaling and automating tissue processing

Select oncogenes, tumor suppressor genes and genomic alterations

- EGFR
- ALK
- VEGF
- TMB
- KRAS
- MSI
- BRAF
- HRD
- BRCA
- VHL
- p53
Earlier Stage Lung Cancer

Dr. Gregory Lubiniecki
VP, Late Oncology Development
Broad Phase 3 development program in earlier stages of lung cancer

<table>
<thead>
<tr>
<th>Setting</th>
<th>KEYNOTE-091</th>
<th>KEYNOTE-671</th>
<th>KEYNOTE-867</th>
<th>KEYLYNK-012</th>
<th>KEYLYNK-013</th>
<th>KEYVIBE-006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjuvant Resectable</td>
<td>Neoadjuvant / Adjuvant Resectable</td>
<td>Adjuvant Inoperable</td>
<td>Locally Advanced Unresectable</td>
<td>Locally Advanced Unresectable</td>
<td>Locally Advanced Unresectable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumor type</th>
<th>Stage IB-IIIA NSCLC</th>
<th>Stage II, IIIA/B NSCLC</th>
<th>Stage I,II NSCLC</th>
<th>Stage III NSCLC</th>
<th>Stage I-III LS-SCLC</th>
<th>Stage III NSCLC</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Primary endpoint</th>
<th>DFS OS</th>
<th>EFS OS</th>
<th>EFS OS</th>
<th>PFS OS</th>
<th>PFS OS</th>
<th>PFS OS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Status</th>
<th>Approved</th>
<th>PDUFA Oct 2023</th>
<th>PCD 2025</th>
<th>PCD 2026</th>
<th>PCD 2027</th>
<th>PCD 2028</th>
</tr>
</thead>
</table>

6 ongoing Phase 3 studies evaluating multiple mechanisms to treat a wide range of patients with earlier stages of lung cancer

*KEYNOTE trials include KEYTRUDA; KEYLYNK trials include KEYTRUDA + Lynparza; KEYVIBE trials include MK-7684A (coformulation of pembrolizumab/vibostolimab)
Compelling KEYNOTE-671 interim results add to evidence of KEYTRUDA's impact on patients with earlier stages of NSCLC

KEYTRUDA plus chemotherapy before surgery and as monotherapy after surgery reduced the time to event occurrence or death by 42% vs pre-operative chemotherapy in patients with stage II, IIIA, IIIB NSCLC

- All subgroups benefitted from treatment regardless of histology, PD-L1 status, tumor stage or geography

Favorable trend in OS for the KEYTRUDA regimen vs pre-operative chemotherapy

- OS did not reach statistical significance at the time of this interim analysis; the trial will continue to evaluate OS according to the statistical analysis plan

Data cutoff date for IA1: July 29, 2022 (median follow-up, 25.2 mo [range, 7.5-50.6])

a. Significance boundary not met at IA1
Select Late-Phase Programs

Dr. Marjorie Green
SVP, Head of Late Oncology Development
Four novel mechanisms beginning registrational studies in 2023

Immuno-oncology
Boost anti-tumor immune responses

- **KEYTRUDA**
 - (pembrolizumab) injection 100 mg

- **VIBESTOLIMAB**
 - pembrolizumab (MK-7684A)
 - anti-TIGIT

- **QUAVONLIMAB**
 - pembrolizumab (MK-1308A)
 - anti-CTLA-4

- **MK-4830**
 - anti-ILT-4

- **MK-5890**
 - CD27 agonist

- **favezelimab/pembro**
 - (MK-4280A)
 - anti-LAG-3

- **zilvertamab vedotin**
 - (MK-2140)
 - anti-ROR1 ADC

- **MK-2870**
 - anti-TROP-2 ADC

- **MK-0482**
 - anti-ILT-3

- **MK-1484**
 - IL-2 Rβγ

- **MK-2870**
 - Individualized Neoantigen Therapy

- **MK-1484**
 - IL-2 Rβγ

- **MK-2870**
 - Bi-and tri-specific T & NK cell engagers

- **ladiratuzumab vedotin**
 - (MK-6440)
 - anti-LIV-1 ADC

- **2 undisclosed ADCs**
 - in clinic

- **6 undisclosed preclinical ADCs**

Tissue Targeting
Increase cancer cell sensitivity with ADCs and immune-engagers

- **MK-4830**
 - anti-ILT-4

- **MK-5890**
 - CD27 agonist

- **V940**
 - Individualized Neoantigen Therapy

- **MK-0482**
 - anti-ILT-3

- **MK-1484**
 - IL-2 Rβγ

- **2 undisclosed ADCs**

Precision Molecular Targeting
Impact pathways that can drive cancer growth

- **Lynparza**
 - olaparib

- **WELIREG**
 - belzutifan

- **TUKYSA**
 - tucatinib

- **MK-5684**
 - CYP11A1 inhibitor

- **MK-1084**
 - KRAS G12C inhibitor

- **bomedemstat**
 - (MK-3543)
 - LSD1 inhibitor

- **MK-5890**
 - CD27 agonist

- **MK-1484**
 - IL-2 Rβγ

- **MK-2870**
 - Bi-and tri-specific T & NK cell engagers

- **ladiratuzumab vedotin**
 - (MK-6440)
 - anti-LIV-1 ADC

- **2 undisclosed ADCs**

- **MK-2870**
 - Bi-and tri-specific T & NK cell engagers

- **ladiratuzumab vedotin**
 - (MK-6440)
 - anti-LIV-1 ADC

- **6 undisclosed preclinical ADCs**

Expanded collaboration with Kelun Biotech accelerates expansive ADC development program

Components of ADCs: antibody, linker, drug / payload

- **Antibody**: Native or engineered
- **Drug**: Based on historical chemotherapy agents
- **Linker**: Site-specific or heterogenous; Cleavable or non-cleavable

Multiple ADC candidates across phases of development

MK-2870
- (anti-TROP2 ADC)
- **Areas of study**: TNBC, NSCLC and other advanced solid tumors

2 undisclosed ADCs in clinic
6 undisclosed preclinical ADCs

MK-2870 and undisclosed ADCs are part of collaboration with Kelun Biotech
Promising Phase 1/2 data for MK-2870 demonstrates potential in NSCLC

- MK-2870 demonstrated encouraging anti-tumor activity in patients with relapsed or refractory locally advanced or metastatic NSCLC
 - Objective response rate of 44%
 - Median duration of response of 9.3 months
- Anti-tumor activity was observed regardless of TROP-2 expression level
- MK-2870 safety profile was manageable with no occurrence of interstitial lung disease
 - No TRAEs led to treatment discontinuation or death
- Broad clinical development program with plans to advance to global Phase 3 clinical trials in NSCLC as well as additional tumor types

MK-2870 is part of collaboration with Kelun Biotech
Encouraging data for adjuvant use of V940 (mRNA-4157) in combination with pembrolizumab in stage III/IV melanoma

- V940 (mRNA-4157) and pembrolizumab reduced the risk of distant metastasis or death by 65% vs pembrolizumab alone in patients with stage III/IV melanoma following complete resection
 - Previously announced V940 (mRNA-4157) and pembrolizumab reduced the risk of recurrence or death by 44% vs pembrolizumab alone
- First randomized trial to demonstrate improvement in RFS and DMFS with an individualized neoantigen therapy
- Plan to initiate Phase 3 study of adjuvant treatment in patients with melanoma, and rapidly expand to additional tumor types, including NSCLC

V940 is part of collaboration with Moderna; 1. One-sided p-value used
MK-5684 (CYP11A1i) provides promising evidence of anti-tumor activity in patients with mCRPC

Mechanism of action
- MK-5684 is an oral nonsteroidal CYP11A1 inhibitor that works by suppressing the production of steroid hormones, a key driver of prostate cancer
 - MK-5684 acts a step earlier than abiraterone in the androgen synthesis pathway
 - Inhibits prostate cancer progression by blocking the first step in biosynthesis of all steroid hormones

Clinical data and development program
- MK-5684 provides promising evidence of anti-tumor activity and a manageable safety profile as a monotherapy in heavily pretreated patients with mCRPC in Phase 2 CYPIDES trial
 - 53% of patients\(^1\) achieved a serum PSA reduction of at least 50% from the baseline concentration

MK-5684 is part of collaboration with Orion; 1. Reflects 24 of 45 patients

Data presented at ESMO 2022
Bomedemstat is a potent, irreversible inhibitor of LSD1 with potential to be disease modifying in myeloproliferative diseases

Mechanism of action

- LSD1 may **regulate the proliferation of hematopoietic stem cells** and is also essential for their differentiation into mature megakaryocytes and granulocytes
- In animal models, LSD1 inhibition has been shown to:
 - **Reduce hallmark symptoms** and bone marrow fibrosis
 - **Lower the mutated clonal population** that drives myeloproliferative diseases

Clinical data and development program

- Phase 2 results from **Essential Thrombocythemia** trial demonstrated that **95%** of the 62 patients treated for >24 weeks **achieved a platelet count** of ≤400 x 10^9/L in the absence of thromboembolic events

 ![Mean platelet count (±95% CI, N=73)](image)

- Phase 2 results also showed:
 - **Lowered or maintained white blood cell count** without causing neutropenia
 - **Maintained/stable hemoglobin levels**
 - **Quality of life improvement** measured through total symptom score
 - **Decrease in variant allele frequency**
- Safety profile for bomedemstat is manageable
- Plan to **initiate Phase 3 development program in 2023**
Commercial Update

Chirfi Guindo
Chief Marketing Officer, Human Health
Driving patient benefits and global growth across a broad portfolio of commercial therapies

Foundational cancer treatment

Market-leading PARPi

TKI with multiple approved indications

Highly-selective small-molecule TKI

First-in-class HIF-2α inhibitor

~1.9 million patients have been treated with commercially available medicines¹

48 approved indications
tumor types plus MSI-H / dMMR and TMB-H

Lynparza, Lenvima and Tukysa are in partnership; ¹. Patients treated with commercially available products as of April 2023
Advancing and expanding a broad program in earlier stages of cancer

<table>
<thead>
<tr>
<th>2018–2022</th>
<th>2023–2025</th>
<th>2026+</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN-054 Melanoma ★ APPROVED</td>
<td>KN-091 NSCLC ★ APPROVED</td>
<td>KN-242 TNBC</td>
</tr>
<tr>
<td>KN-057 NMIBC ★ APPROVED</td>
<td>KN-671 NSCLC</td>
<td>KN-756 Breast</td>
</tr>
<tr>
<td>KN-522 TNBC ★ APPROVED</td>
<td>KN-585 Gastric</td>
<td>KN-905 MIBC</td>
</tr>
<tr>
<td>KN-629 cSCC ★ APPROVED</td>
<td>KN-676 NMIBC</td>
<td>KN-992 MIBC</td>
</tr>
</tbody>
</table>

- Successful commercial execution with 8 launches to-date in earlier stages of cancer
- Plan to initiate additional studies in 2023 including for MK-2870, V940 and others
- Numerous Phase 3 readouts expected in 2023 and beyond

Timeline based on primary completion date on www.clinicaltrials.gov and FDA approvals. Actual timing may vary.
Strong launches across recent indications in earlier stages of cancer

<table>
<thead>
<tr>
<th>KN-522: TNBC</th>
<th>KN-716: Melanoma</th>
<th>KN-564: RCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>• First and only anti-PD-1 regimen to demonstrate pCR and EFS in earlier stage TNBC (NeoAdj/Adj)</td>
<td>• First and only anti-PD-1 adjuvant treatment option approved in patients with stage IIB, IIC and III melanoma</td>
<td>• First and only immunotherapy to demonstrate efficacy in patients with localized RCC as adjuvant treatment post-nephrectomy</td>
</tr>
<tr>
<td>• Significant growth driver with strong uptake since launch</td>
<td>• Market leadership across adjuvant setting (Stage IIB/IIC and III combined) since launch</td>
<td>• First and only immunotherapy included in NCCN guidelines for adjuvant treatment of RCC</td>
</tr>
<tr>
<td>• Established leadership position quickly as the new standard of care over chemotherapy in earlier stage TNBC</td>
<td>• NCCN updated recommendation in Stage IIB/IIC to Category 1</td>
<td>• Opportunity to increase penetration of intermediate-high risk patient segment</td>
</tr>
<tr>
<td>• Opportunity to increase neoadjuvant treatment rate as well as the proportion of patients receiving adjuvant therapy following surgery</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KN: KN-516, KN-517, KN-564
Extending leadership in NSCLC

- KN-671 and KN-091 results **build on wealth of data** in NSCLC
- KN-091 is the **only anti-PD-1 adjuvant** treatment option approved in patients with stage IB-IIIA **regardless of PD-L1 expression**
 - Initial uptake in adjuvant setting is very encouraging
- KN-671 demonstrated **significant improvement in EFS**, in patients with and without pCR, that was consistent across all PD-L1 subgroups, histology and stage
- KN-671 is the **7th positive pivotal study** for KEYTRUDA in lung cancer

Providing treatment options for patients

- Upon approval of KN-671, and with the recent launch of KN-091, will be **the only IO regimen indicated for both neoadjuvant/adjuvant and adjuvant use** providing important treatment options to patients
- **Improving drug treatment rates and screening rates** remain important unmet needs in the earlier-stage setting
 - In the **near-term**, focused on **increasing drug treatment rates** by educating HCPs regarding the risk of disease recurrence and benefits of systemic therapy
 - Over the **long-term**, partnering with organizations across the industry and launching targeted initiatives to **increase screening rates**
Multiple growth drivers that will enable sustained leadership in oncology

| Moving into earlier stage cancers | • Expected to drive **>50% of KEYTRUDA’s annual growth** through 2025
• Expected to represent **~25% of global KEYTRUDA sales** in 2025 and increase as a % of total sales thereafter |
|-----------------------------------|--|
| Broadening the impact of approved therapies | • **Subcutaneous coformulation** of pembrolizumab with hyaluronidase
• **IO/IO coformulations** of pembrolizumab with TIGIT, LAG-3, CTLA-4
• **Combinations** of KEYTRUDA, Lynparza, Lenvima and WELIREG with other agents |
| Advancing pipeline of novel mechanisms | • Potential for **>$10B from new mechanisms** approaching the mid-2030s
 − Includes **ADCs** (e.g. TROP-2, ROR-1) and **small molecules** (e.g. inhibitors of CYP11A1, LSD1, KRAS, BTK and others)
 − Does not include **individualized neoantigen therapy** and additional **business development** |
Closing Remarks

Dr. Dean Li
President, Merck Research Laboratories
Structured process for advancing novel approaches to treating cancer and preventing certain HPV-related cancers

Development pathway for novel oncology mechanisms

- **Establish beachhead** as a monotherapy in metastatic disease
- **Expand** into new tumor types and **deepen** response with novel combinations in metastatic disease
- **Extend** to earlier stages of disease either as monotherapy or with novel combinations

Immuno-oncology

- **V940**
- **KEYTRUDA**
- **IO/IO coformulations**
- **Lynparza**
- **Tukysa**
- **Bi-and tri-specific T & NK cell engagers**
- **ADCs**
- **MK-5684**
- **MK-1484**
- **MK-1084**
- **MK-0482**

Prevention of certain HPV-related cancers

- **GARDASIL**
- **MK-5684**
- **MK-1084**
- **MK-0482**

1. Collaborations with Dragonfly and Janux
2. Collaboration with Orion
3. Collaboration with Eisai
4. Collaboration with AstraZeneca
5. Collaboration with Seagen
6. Collaboration with Moderna
Appendix
Acronyms

ADC = Antibody-drug conjugate
BTK = Bruton’s tyrosine kinase
CI = Confidence Interval
cSCC = Cutaneous squamous cell carcinoma
CTLA-4 = Cytotoxic T-lymphocyte associated protein 4
DFS = Disease free survival
DMFS = Distant metastasis-free survival
dMMR = Deficient mismatch repair
EFS = Event free survival
HCC = Hepatocellular carcinoma
HIF-2α = Hypoxia-inducible factor-2α
HR = Hazard ratio
ILT-4 = Immunoglobulin-like transcript 4
INT = Individualized neoantigen therapy
ITT = Intent to treat
IO = Immuno-oncology
IV = Intravenously
KRAS = Kirsten rat sarcoma viral oncogene homolog
LAG-3 = Lymphocyte-activation gene 3
LSD1 = Lysine specific demethylase 1
mCRPC = Metastatic castration-resistant prostate cancer
MIBC = Muscle-invasive bladder cancer
mPR = Major pathologic response
MSI-H = Microsatellite instability-high
NMIBC = Non-muscle invasive bladder cancer
NCCN = National Comprehensive Cancer Center
NSCLC = Non-small cell lung cancer
ORR = Objective response rate
OS = Overall survival
PARPi = Poly-ADP ribose polymerase inhibitor
PCD = Primary completion date
pCR = Pathological complete response
PDUFA = Prescription Drug User Fee Act
PFS = Progress free survival
Q3W = Every three weeks dosing
Q6W = Every six weeks dosing
RCC = Renal cell carcinoma
RFS = Recurrence free survival
SCLC = Small cell lung cancer
TIGIT = T cell immunoreceptor with Ig and ITIM domains
TKI = Tyrosine kinase inhibitor
TMB-H = Tumor mutational burden-high
TNBC = Triple negative breast cancer
TRAE = Treatment related adverse event
Dr. Dean Li serves as executive vice president and president of Merck Research Laboratories. He leads the company’s worldwide human vaccines and therapeutics research and development organization.

Since joining Merck in 2017, Dean has held leadership roles in the Translational Medicine and Discovery functions and was appointed to President, Merck Research Laboratories in January 2021. Prior to joining Merck, Dean held positions of increasing responsibility in translational medical research at the University of Utah. Most recently he served as the H.A. & Edna Benning Professor of Medicine and Cardiology, chief scientific officer, associate vice president and vice dean at the University of Utah Health System. From 2015 to 2016, he also served as interim CEO of Associated Regional University Pathologists, one of the United States’ largest clinical reference laboratories. During his tenure at the University of Utah, he co-founded several biotechnology companies based upon research conducted in his laboratory, including Recursion Pharmaceuticals, Hydra Biosciences and Navigen Pharmaceuticals.

Dean received his Bachelor’s degree in Chemistry from the University of Chicago and his graduate and clinical training at Washington University School of Medicine in St. Louis. Dean is a board-certified cardiologist, a member of the American Society for Clinical Investigation and the Association of American Physicians.
Dr. Eliav Barr is senior vice president and head of Global Clinical Development and Chief Medical Officer at Merck Research Laboratories. He leads all late-stage clinical development for Merck’s human health portfolio and pipeline.

Prior to his current role, Eliav led MRL’s Global Medical Affairs organization expanding Merck’s scientific engagement and implementation efforts in oncology, vaccines and infectious diseases. Since joining Merck in 1995, Eliav has held positions of increasing responsibility including leadership roles in oncology and infectious diseases clinical development. He was also previously Therapeutic Area Head for Infectious Diseases and managed product development teams in Oncology and Infectious Disease.

Eliav is a cardiologist by training. He received his undergraduate degree from Penn State University and his medical degree from Thomas Jefferson University. He completed his Internal Medicine residency and Cardiology Fellowship at Johns Hopkins University, and subsequently pursued post-doctoral training at the University of Michigan. Prior to joining Merck, he held a faculty position at the University of Chicago.
Dr. Marjorie Green is senior vice president and head of late-stage oncology at Merck Research Laboratories. She leads all late-stage clinical development programs for oncology.

Marjorie joins Merck from Seagen, where she was senior vice president and head of late-stage oncology, leading clinical development of a diverse portfolio of oncology candidates including multiple antibody drug conjugates. She previously held positions of increasing responsibility at Genentech culminating in her tenure as vice president, Global Product Development, head of breast and gynecologic tumor franchise. Previously, she was assistant professor and medical director of the Nellie B. Connally Breast Center and vice-chair of the Institutional Review Board at the MD Anderson Cancer Center, Houston, Texas. During her tenure a MD Anderson, Marjorie established herself as a nationally recognized clinical expert in the management of breast cancer and the treatment and prevention of associated bone metastases and has authored multiple manuscripts and book chapters on preoperative chemotherapy.

Marjorie received her Bachelor of Arts from the University of Notre Dame and her medical degree from the University of Texas Medical Branch. She conducted an internal medicine residency at University of Virginia School of Medicine and completed fellowships in medical oncology and hematology at the MD Anderson Cancer Center.
Chirfi Guindo is chief marketing officer for Merck. He is responsible for leading the development and implementation of the company’s long-term strategy for the human health portfolio spanning oncology, vaccines, pharmaceutical and pipeline products.

Prior to this role, Chirfi was executive vice president and head of global product strategy and commercialization at Biogen.

Before joining Biogen in 2017, Chirfi spent more than 25 years with Merck in positions of increasing responsibility in finance, sales, commercial and marketing. During his time with Merck, he led global marketing for Merck’s HIV portfolio and also led the company’s human health businesses in Canada, the Netherlands and South Africa. Chirfi has been recognized for developing strong talent and forging innovative public-private partnerships that expand access to Merck medicines, while elevating the profile of Merck as a patient-focused company.

Chirfi is a graduate of Ecole Centrale de Paris (France) with a degree in engineering and has a master’s of Business Administration from New York University’s Stern School of Business.
Dr. Gregory Michael Lubiniecki is Vice President and Therapeutic Area Head at Merck Research Laboratories, where he has been employed for over 15 years in oncology clinical research. Gregory has worked on many clinical trials ranging from Phase 1 to 3. He is the therapeutic area head supervising late-stage clinical development for Thoracic, Head and Neck, and Hematologic Malignancies as well as the Merck-Eisai Collaboration. Gregory was the former product development team leader for KEYTRUDA in thoracic malignancies, the product development team leader for ZOLINZA, and the oncology investigator studies chair. He has worked to register ZOLINZA and KEYTRUDA in various international markets.

Gregory earned his medical degree from the Johns Hopkins School of Medicine. He attended the Mayo Graduate School of Medicine for his internship and residency in internal medicine. He completed his hematology and medical oncology fellowship training at the University of Pennsylvania. Dr. Gregory sees patients with thoracic malignancies at the Temple Fox Chase Cancer Center in Philadelphia, Pennsylvania, USA.
Dr. Scot Ebbinghaus joined Merck Research Laboratories Late Stage Oncology Development in 2007. He is currently Vice President and Therapeutic Area Head for Late Stage Oncology Development with responsibilities for overseeing the development program of multiple late stage assets, including KEYTRUDA, in the Merck Oncology portfolio and in Strategic Alliances. Scot has oversight responsibility for GI tumors, GU tumors, melanoma, and innovative strategies (tumor agnostic approaches and rare tumors), the asset teams for WELIREG and MK-5684 (CYP11A inhibitor), and co-chairs the joint development committees for Lynparza and Koselugo.

Prior to joining Merck, Scot was an Associate Professor at the University of Arizona in the Department of Medicine, Section of Hematology/Oncology.

Scot earned his M.D. degree from the University of Missouri-Kansas City, completed his residency in Internal Medicine and his fellowship in Hematology-Oncology at the University of Alabama-Birmingham. Dr. Ebbinghaus has published over 60 manuscripts, and 5 book chapters in the field of Oncology. In addition to current responsibilities at Merck, Dr. Ebbinghaus is an attending physician at Fox Chase Cancer Center in Philadelphia in the Thoracic Oncology unit.
Dr. Gursel Aktan joined Merck in August 2014 as the Breast Product Development Team Lead where she developed a comprehensive Breast Clinical Development program for early and late stage Breast Cancer. She was promoted to Section Head of Women’s Cancer and New Indication’s position in 2016 and developed an extensive program for GYN indications in ovarian, cervical and endometrial cancers. She has overseen multiple approvals such as PAOLA, SOLO-2, SOLO-1, MSI-H indication, KN146-Endometrial, cervical 2L+, and OlympiAD, KN355, KN522, KN775, KN826 and OlympiA. She has also led the integration of the AstraZeneca collaboration and is currently a Joint Development Committee member for the Seagen collaboration.

Prior to joining Merck, Gursel was the Project Physician Leader of the Global Clinical Development Program for dabrafenib trametinib in melanoma where she led two mono and combination approvals. Before that she was the Project Physician Leader for Tykerb, including the adjuvant program, where she was also the global medical monitor for the ALTTO, NeoALTTO and TEACH studies.

Gursel obtained her medical degrees at Istanbul University, Istanbul Medical School and has practiced in Oncology, and holds a Ph.D. in Tumor Biology and Immunology from the Istanbul University Oncology Institute.