CPU ARCHITECTURE IN THE DATA CENTER

SAILESH KOTTAPALLI
INTEL FELLOW
CHIEF DATA CENTER CPU ARCHITECT
THE FUNDAMENTALS OF DATA CENTER COMPUTING

PER-CORE PERFORMANCE (PCP)

Performance of a software context running on each physical or virtual core when the entire server is running.

Minimum PCP:
PCP needed to process a single web transaction within the latency SLA.

THROUGHPUT PERFORMANCE (TPT)

Cumulative throughput performance that we can achieve from the processor or server.

Effective TPT:
Rate of processing multiple transactions while meeting the latency SLA on each web transaction.

\[TPT = PCP \times (\text{number of cores}) \]

DATA CENTER REQUIRES AN OPTIMAL BALANCE
RELEVANCE OF PER-CORE PERFORMANCE

- Performance & Response Time
- Flexibility and Elastic Compute
- Performance at Scale
- Amdahl’s Law
- Software TCO

Leadership PCP critical to overall data center performance
SCALING PCP AND TPT

INDIVIDUAL CORE PERFORMANCE
High frequency, low-power design, new instructions, and higher instructions per clock cycle

MULTI-CORE SCALING
Intel® Mesh Architecture: Efficient on-die interconnect design, cache hierarchy and sharing, power efficiency and fine-grain power delivery

MULTI-SOCKET SCALING
Inter-processor interconnect, protocol efficiency and reduced latency

MEMORY SUB-SYSTEM ARCHITECTURE
Reducing latency, increasing bandwidth and capacity

HIGH PER-CORE PERFORMANCE ➔ LEADERSHIP EFFECTIVE THROUGHPUT
SCALING PCP AND TPT

INDIVIDUAL CORE PERFORMANCE
High frequency, low-power design, new instructions, and higher instructions per clock cycle

MULTI-CORE SCALING
Intel® Mesh Architecture: Efficient on-die interconnect design, cache hierarchy and sharing, power efficiency and fine-grain power delivery

MULTI-SOCKET SCALING
Inter-processor interconnect, protocol efficiency and reduced latency

MEMORY SUB-SYSTEM ARCHITECTURE
Reducing latency, increasing bandwidth and capacity

HIGH PER-CORE PERFORMANCE → LEADERSHIP EFFECTIVE THROUGHPUT
SCALING PCP AND TPT

INDIVIDUAL CORE PERFORMANCE
High frequency, low-power design, new instructions, and higher instructions per clock cycle

MULTI-CORE SCALING
Intel® Mesh Architecture: Efficient on-die interconnect design, cache hierarchy and sharing, power efficiency and fine-grain power delivery

MULTI-SOCKET SCALING
Inter-processor interconnect, protocol efficiency and reduced latency

MEMORY SUB-SYSTEM ARCHITECTURE
Reducing latency, increasing bandwidth and capacity

HIGH PER-CORE PERFORMANCE → LEADERSHIP EFFECTIVE THROUGHPUT
SCALING PCP AND TPT

INDIVIDUAL CORE PERFORMANCE
High frequency, low-power design, new instructions, and higher instructions per clock cycle

MULTI-CORE SCALING
Intel® Mesh Architecture: Efficient on-die interconnect design, cache hierarchy and sharing, power efficiency and fine-grain power delivery

MULTI-SOCKET SCALING
Inter-processor interconnect, protocol efficiency and reduced latency

MEMORY SUB-SYSTEM ARCHITECTURE
Reducing latency, increasing bandwidth and capacity

HIGH PER-CORE PERFORMANCE → LEADERSHIP EFFECTIVE THROUGHPUT
SCALING PCP AND TPT

INDIVIDUAL CORE PERFORMANCE
High frequency, low-power design, new instructions, and higher instructions per clock cycle

MULTI-CORE SCALING
Intel® Mesh Architecture: Efficient on-die interconnect design, cache hierarchy and sharing, power efficiency and fine-grain power delivery

MULTI-SOCKET SCALING
Inter-processor interconnect, protocol efficiency and reduced latency

MEMORY SUB-SYSTEM ARCHITECTURE
Reducing latency, increasing bandwidth and capacity

HIGH PER-CORE PERFORMANCE → LEADERSHIP EFFECTIVE THROUGHPUT
UTILIZATION IN THE DATA CENTER “COMPUTER”

CONSOLIDATION

PERFORMANCE CONSISTENCY
Cache capacity enforcement, memory bandwidth allocation, turbo/throttle isolation, code and data isolation

LOW JITTER
Low performance variability: I/O, memory, compute = consistently lower latency
Non-blocking frequency transitions

HIGH DATA CENTER EFFICIENCY
Intel® Data Direct I/O Technology, CB-DMA, DPDK, Crypto/Compression with Intel® AVX instructions and Intel® QuickAssist Technology, Erasure Coding, RAID

PROCESSOR ARCHITECTURE DESIGNED FOR HIGH UTILIZATION
UTILIZATION IN THE DATA CENTER “COMPUTER”

PROCESSOR ARCHITECTURE DESIGNED FOR HIGH UTILIZATION

<table>
<thead>
<tr>
<th>KTI</th>
<th>PCU</th>
<th>Global Hub</th>
<th>PCIe</th>
<th>PCIe</th>
<th>UPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MESH</td>
<td>LCC</td>
<td>MESH</td>
<td>LCC</td>
<td>MESH</td>
<td>LCC</td>
</tr>
</tbody>
</table>

CONSOLIDATION
- Virtualization: VT performance, VM migration, handling large VM sizes
- Profiling: Cache and memory bandwidth monitoring, instruction tracing
- Availability: Intel® Run Sure Technology

PERFORMANCE CONSISTENCY
- Cache capacity enforcement, memory bandwidth allocation, turbo/throttle isolation, code and data isolation

LOW JITTER
- Low performance variability: I/O, memory, compute = consistently lower latency
- Non-blocking frequency transitions

HIGH DATA CENTER EFFICIENCY
- Intel® Data Direct I/O Technology, CB-DMA, DPDK, Crypto/Compression with Intel® AVX instructions and Intel® QuickAssist Technology, Erasure Coding, RAID
UTILIZATION IN THE DATA CENTER “COMPUTER”

CONSOLIDATION

PERFORMANCE CONSISTENCY
Cache capacity enforcement, memory bandwidth allocation, turbo/throttle isolation, code and data isolation

LOW JITTER
Low performance variability: I/O, memory, compute = consistently lower latency
Non-blocking frequency transitions

HIGH DATA CENTER EFFICIENCY
Intel® Data Direct I/O Technology, CB-DMA, DPDK, Crypto/Compression with Intel® AVX instructions and Intel® QuickAssist Technology, Erasure Coding, RAID

PROCESSOR ARCHITECTURE DESIGNED FOR HIGH UTILIZATION
Utilization in the Data Center “Computer”

Consolidation

Performance Consistency
Cache capacity enforcement, memory bandwidth allocation, turbo/throttle isolation, code and data isolation

Low Jitter
Low performance variability: I/O, memory, compute = consistently lower latency
Non-blocking frequency transitions

High Data Center Efficiency
Intel® Data Direct I/O Technology, CB-DMA, DPDK, Crypto/Compression with Intel® AVX instructions and Intel® QuickAssist Technology, Erasure Coding, RAID

Processor Architecture Designed for High Utilization
UTILIZATION IN THE DATA CENTER “COMPUTER”

CONSORTIUM

PERFORMANCE CONSISTENCY
Cache capacity enforcement, memory bandwidth allocation, turbo/throttle isolation, code and data isolation

LOW JITTER
Low performance variability: I/O, memory, compute = consistently lower latency
Non-blocking frequency transitions

HIGH DATA CENTER EFFICIENCY
Intel® Data Direct I/O Technology, CB-DMA, DPDK, Crypto/Compression with Intel® AVX instructions and Intel® QuickAssist Technology, Erasure Coding, RAID

PROCESSOR ARCHITECTURE DESIGNED FOR HIGH UTILIZATION
CPU FOUNDATION FOR ARTIFICIAL INTELLIGENCE

MATRIX OPERATIONS
Intel® Advanced Vector Extensions

LOWER & MIXED PRECISION
Intel® Deep Learning Boost

LARGER CACHES, MEMORY LATENCY & BANDWIDTH

OPTIMAL DATA MOVEMENT & TRANSFORMATIONS

OPTIMIZED LIBRARIES AND FRAMEWORKS

INTEL® XEON® SCALABLE PROCESSOR: ENABLES INFRASTRUCTURE-WIDE AI READINESS

Illustration: Intel® Xeon® Scalable Processor
CPU FOUNDATION FOR ARTIFICIAL INTELLIGENCE

MATRIX OPERATIONS
Intel® Advanced Vector Extensions

LOWER & MIXED PRECISION
Intel® Deep Learning Boost

LARGER CACHES, MEMORY LATENCY & BANDWIDTH

OPTIMAL DATA MOVEMENT & TRANSFORMATIONS

OPTIMIZED LIBRARIES AND FRAMEWORKS

INTEL® XEON® SCALABLE PROCESSOR: Enables infrastructure-wide AI readiness
CPU FOUNDATION FOR ARTIFICIAL INTELLIGENCE

- **Matrix Operations**
 - Intel® Advanced Vector Extensions
- **Lower & Mixed Precision**
 - Intel® Deep Learning Boost
- **Larger Caches, Memory Latency & Bandwidth**
- **Optimal Data Movement & Transformations**
- **Optimized Libraries and Frameworks**

Intel® Xeon® Scalable Processor: Enables Infrastructure-Wide AI Readiness
CPU FOUNDATION FOR ARTIFICIAL INTELLIGENCE

MATRIX OPERATIONS
Intel® Advanced Vector Extensions

LOWER & MIXED PRECISION
Intel® Deep Learning Boost

LARGER CACHES, MEMORY LATENCY & BANDWIDTH

OPTIMAL DATA MOVEMENT & TRANSFORMATIONS

OPTIMIZED LIBRARIES AND FRAMEWORKS

INTEL® XEON® SCALABLE PROCESSOR: ENABLES INFRASTRUCTURE-WIDE AI READINESS
CPU FOUNDATION FOR ARTIFICIAL INTELLIGENCE

MATRIX OPERATIONS
Intel® Advanced Vector Extensions

LOWER & MIXED PRECISION
Intel® Deep Learning Boost

LARGER CACHES, MEMORY LATENCY & BANDWIDTH

OPTIMAL DATA MOVEMENT & TRANSFORMATIONS

OPTIMIZED LIBRARIES AND FRAMEWORKS

INTEL® XEON® SCALABLE PROCESSOR: ENABLES INFRASTRUCTURE-WIDE AI READINESS

DATA CENTER PROCESSOR CORE

DATA-CENTRIC INNOVATION SUMMIT

#IntelDCISummit
INTEL® OPTANE™ DC MEMORY ARCHITECTURE

Memory System Architecture

Latency and Bandwidth Support

Interfaces to Support Persistence

Quality of Service

Architecture to Transform the Memory and Storage Hierarchy

Illustration: Intel® Xeon® Scalable Processor
INTEL® OPTANE™ DC MEMORY ARCHITECTURE

MEMORY SYSTEM ARCHITECTURE

- Latency and Bandwidth Support
- Interfaces to Support Persistence
- Quality of Service

ARCHITECTURE TO TRANSFORM THE MEMORY AND STORAGE HIERARCHY

<table>
<thead>
<tr>
<th>KTI</th>
<th>PCU</th>
<th>Global Hub</th>
<th>PCIe</th>
<th>PCIe</th>
<th>UPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE</td>
<td>CORE</td>
<td>CORE</td>
<td>CORE</td>
<td>CORE</td>
<td>CORE</td>
</tr>
<tr>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
</tr>
<tr>
<td>IMC</td>
<td>CORE</td>
<td>CORE</td>
<td>CORE</td>
<td>CORE</td>
<td>IMC</td>
</tr>
<tr>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
</tr>
<tr>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
</tr>
<tr>
<td>CORE</td>
<td>CORE</td>
<td>CORE</td>
<td>CORE</td>
<td>CORE</td>
<td>CORE</td>
</tr>
<tr>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
</tr>
<tr>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
<td>MESH LCC</td>
</tr>
<tr>
<td>CORE</td>
<td>CORE</td>
<td>CORE</td>
<td>CORE</td>
<td>CORE</td>
<td>CORE</td>
</tr>
</tbody>
</table>

INTEL® QLC 3D NAND SSD

HDD / TAPE

COLD TIER
LEADERSHIP CPU ARCHITECTURE FOR A DATA-CENTRIC FUTURE

PCP AND TPT LEADERSHIP
HIGH UTILIZATION
FOUNDATION FOR AI
MEMORY INNOVATION

DESIGNED. TESTED. TRusted.
DELIVERING INNOVATION AND CUSTOMER VALUE

#IntelDCISummit
Q&A
Statements in this presentation that refer to business outlook, future plans and expectations are forward-looking statements that involve a number of risks and uncertainties. Words such as "anticipates," "expects," "intends," "goals," "plans," "believes," "seeks," "estimates," "continues," "may," "will," "would," "should," "could," and variations of such words and similar expressions are intended to identify such forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Such statements are based on management's current expectations, unless an earlier date is indicated, and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in these forward-looking statements. Important factors that could cause actual results to differ materially from the company's expectations are set forth in Intel's earnings release dated July 26, 2018, which is included as an exhibit to Intel's Form 8-K furnished to the SEC on such date. Additional information regarding these and other factors that could affect Intel's results is included in Intel's SEC filings, including the company's most recent reports on Forms 10-K and 10-Q. Copies of Intel's Form 10-K, 10-Q and 8-K reports may be obtained by visiting our Investor Relations website at www.intc.com or the SEC's website at www.sec.gov.

All information in this presentation reflects management's views as of the date of this presentation, unless an earlier date is indicated. Intel does not undertake, and expressly disclaims any duty, to update any statement made in this presentation, whether as a result of new information, new developments or otherwise, except to the extent that disclosure may be required by law.