Statements in this presentation that refer to business outlook, future plans and expectations are forward-looking statements that involve a number of risks and uncertainties. Words such as "anticipates," "expects," "intends," "goals," "plans," "believes," "seeks," "estimates," "continues," "may," "will," "would," "should," "could," and variations of such words and similar expressions are intended to identify such forward-looking statements. Statements that refer to or are based on estimates, forecasts, projections, uncertain events or assumptions, including statements relating to total addressable market (TAM) or market opportunity, future products and the expected availability and benefits of such products, and anticipated trends in our businesses or the markets relevant to them, also identify forward-looking statements. Such statements are based on management's expectations as of May 8, 2019, unless an earlier date is indicated, and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in these forward-looking statements. Important factors that could cause actual results to differ materially from the company's expectations are set forth in Intel's earnings release dated April 25, 2019, which is included as an exhibit to Intel's Form 8-K furnished to the SEC on such date. Additional information regarding these and other factors that could affect Intel's results is included in Intel's SEC filings, including the company's most recent reports on Forms 10-K and 10-Q. Copies of Intel's Form 10-K, 10-Q and 8-K reports may be obtained by visiting our Investor Relations website at www.intc.com or the SEC's website at www.sec.gov.

All information in this presentation reflects management's views as of May 8, 2019, unless an earlier date is indicated. Intel does not undertake, and expressly disclaims any duty, to update any statement made in this presentation, whether as a result of new information, new developments or otherwise, except to the extent that disclosure may be required by law.
KEY MESSAGES

THE DATA-CENTRIC OPPORTUNITY IS MASSIVE
LARGEST OPPORTUNITY IN INTEL'S HISTORY, OVER $200B TAM BY 2023

INDUSTRY MEGA-TRENDS LEVERAGE OUR STRENGTHS
ARTIFICIAL INTELLIGENCE, CLOUD, CLOUDIFICATION OF NETWORK | EDGE

INTEL HAS AN UNPARALLELED ARRAY OF ASSETS TO FUEL GROWTH
PORTFOLIO OF LEADERSHIP PRODUCTS TO MOVE, STORE AND PROCESS DATA
INDUSTRY MEGA-TRENDS

GROWTH OF ARTIFICIAL INTELLIGENCE

PROLIFERATION OF CLOUD COMPUTING

CLOUDIFICATION OF THE NETWORK & EDGE
EXPLOSION IN DEMAND FOR COMPUTE

INCREASING COMPUTE DEMAND
DIVERSIFYING WORKLOAD NEEDS

COMPUTE DEMAND (MIPS)
~60% CAGR

Source: Amalgamation of analyst data and Intel analysis.
LARGEST DATA-CENTRIC OPPORTUNITY IN INTEL HISTORY

DATA-CENTRIC TAM FORECAST
7% CAGR

> $200B
> $150B

IOT + AD
FPGA
NON-VOLATILE MEMORY
DATA CENTER MEMORY
SILICON PHOTONICS
ETHERNET + FABRIC
NETWORK LOGIC SILICON
STORAGE LOGIC SILICON
SERVER + SERVER-BASED STORAGE LOGIC SILICON

21% MSS

GOAL
GROW REVENUE FASTER THAN TAM

Source: 2018 MSS is based on Intel financials. 2023F SI TAM is based on amalgamation of analyst data and Intel analysis, based upon current expectations and available information and are subject to change without notice. Data Center includes Server, Storage & Network computing, Ethernet/FPGA, Silicon Photonics and Memory. Non-Volatile Memory includes NAND and Opleane™ technology. IOT includes addressable Logic: ASIC/ASSP, MPU, MCU, DSP for Industrial, Transportation, Automated Driving, Retail, Video Surveillance, Healthcare, Public Sector, Office Automation, Gaming and Smart Home. Forecast is soft estimate subject to significant change and revisions.
◊ Cloud SP + Comms SP approaching 70% of DCG revenue

◊ 2019 revenue forecast down mid-single digits YOY

◊ Inventory and capacity absorption off of a record 21% growth year

◊ Continued China weakness
PUBLIC CLOUD SP GROWTH & DIVERSIFICATION

INTEL PUBLIC CLOUD SP REVENUE
>30% CAGR

$B

2014 2015 2016 2017 2018

NEXT WAVE

29% CAGR

SUPER 7

35% CAGR

INVESTING TO ENABLE NEXT WAVE CSPS
NEXT WAVE GROWTH OF 33% IN 2018

DEEPEN PARTNERSHIPS WITH CSPS
CUSTOM CPUS >55% OF VOLUME IN 2018

PUBLIC CLOUD BUSINESS IS TAM EXPANSIVE
2/3 OF REV IS TAM EXPANSIVE, AND GROWING
(CONSUMER AND NEW CLOUD SERVICES)
Proliferation of Cloud Computing
Enterprise and Comms Service Providers

Digital Transformation Continues

Cisco

Cloud SPS Investing in Hybrid Cloud Solutions

AWS Outposts

Dell Technologies Cloud

Google Cloud Anthos

Microsoft Azure

VMware Solutions

Rakuten

Siemens Healthineers

Express
ARCHITECTING THE DATA-CENTRIC FUTURE

MOVE FASTER
- Intel Ethernet
- Intel Silicon Photonics
- Intel Omni-Path Fabric

STORE MORE
- Intel Optane DC Persistent Memory
- Intel Optane DC Solid State Drive

PROCESS EVERYTHING
- Intel Xeon Platinum
- Intel Atom
- Intel Stratix 10
- Intel Movidius
- Intel Nervana

SOFTWARE & SYSTEM-LEVEL OPTIMIZED
“Only one company can introduce technologies across such a broad set of areas – this is unparalleled.”

Mario Morales, IDC
2ND GENERATION INTEL® XEON® SCALABLE PROCESSOR

- **>50 STANDARD SKUS**
- **DOZENS CUSTOM SKUS**
- **8 TO 56 CORES PER SOCKET**
- **1 TO 8 SOCKETS**
- **4.5TB MEMORY PER SOCKET**
- **UP TO 1.33X AVG. MAINSTREAM PERF GEN ON GEN**

Performance results are based on testing as of dates shown in configuration and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
INTEL® OPTANE™ DC PERSISTENT MEMORY
A PLATFORM APPROACH

INTEL® OPTANE™ DC PERSISTENT MEMORY SAM (2023)
$10B
>50% CAGR ('18-'23)

CUSTOMER PROOF-OF-CONCEPT TRACTION SINCE LAUNCH

>100 FORTUNE 500
5 SUPER 7
>30 NEXT WAVE CSPs
>10 COMMS SPs

IN-MEMORY DATABASE
VMS, CONTAINERS, APP DENSITY
CONTENT DELIVERY
REAL-TIME ANALYTICS
STORAGE DATA REPLICACTION
HIGH PERFORMANCE COMPUTING

INVESTOR MEETING
Source: Amalgamation of analyst data and Intel analysis.
ICE LAKE ON TRACK

2014
INTEL® XEON®
PROCESSOR E5 V3
HASWELL

2015
INTEL® XEON®
PROCESSOR E5 V4
BROADWELL

2016
INTEL® XEON®
SCALABLE PROCESSOR
SKYLAKE

2017

2018
2ND GEN INTEL® XEON®
SCALABLE PROCESSOR
CASCADE LAKE

2019
COOPER LAKE
&
ICE LAKE

2020

2021

2022

PRODUCTION SHIPMENTS 1H’20
SAMPLES SHIPPING NOW
POWERED ON AT MULTIPLE CUSTOMERS
INCREASING THE PACE OF INNOVATION

2014: INTEL® XEON® PROCESSOR E5 V3 HASWELL
2015: INTEL® XEON® PROCESSOR E5 V4 BROADWELL
2016: INTEL® XEON® SCALABLE PROCESSOR SKYLAKE
2017: 2ND GEN INTEL® XEON® SCALABLE PROCESSOR CASCADE LAKE
2018: COOPER LAKE & ICE LAKE
2019: SAPPHIRE RAPIDS
2020: NEXT GEN

DRIVING LEADERSHIP WORKLOAD PERFORMANCE

5 TO 7 QUARTER CADENCE
MOVING TO
4 TO 5 QUARTER CADENCE

INTEL® INVESTOR MEETING
AI OPPORTUNITY

AI DATA CENTER SI TAM
>20% CAGR

~$10B

INFERENCE

~$4B

TRAINING

2018

2023

'18 INTEL DATA CENTER AI REV

>$1.7B

Source: Amalgamation of analyst data and Intel analysis. Intel AI revenue based on Intel financials and analysis for data center processors and FPGAs.
DELIVERING AI COMPUTE FROM EDGE TO CLOUD
FROM CPU TO XPU - ONE SIZE DOES NOT FIT ALL

SCALAR
Intel® Xeon® Scalable Processor Family

VECTOR
Intel® Discrete Graphics

SPATIAL
Intel® FPGA

MATRIX
Intel® Nervana™ NNP
Intel® Movidius™ Myriad™
Intel® Mobileye® EyeQ®

ONEAPI UNIFIED DEVELOPER FRAMEWORK
INTEL® DEEP LEARNING BOOST
ONLY CPU WITH BUILT-IN INFERENCE ACCELERATION

INTEL OPTIMIZATION FOR CAFFE RESNET-50

PyTorch acceleration baked into the latest generation of Intel Xeons. That will help speed up the 200 trillion predictions and 6 billion translations Facebook does every day. facebook.com/yann.lecun/pos...

3:18 PM - 9 Apr 2019

SUPPORTED IN ALL MAJOR FRAMEWORKS

Caffe  mxnet  OpenVINO  ONNX

PaddlePaddle  PyTorch  TensorFlow

Performance results are based on testing as of dates shown in configuration and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.
INTEL® NERVANA™
NEURAL NETWORK PROCESSOR FOR INFEERENCE

INCLUDING
ICE LAKE CORES

SILICON
POWERED-ON

INDUSTRY LEADING DEEP LEARNING
TOPS/W & POWER EFFICIENCY

PARTNERING WITH
FACEBOOK
Autonomous cars and Edge computing are key areas of growth. By 2023, there's an estimated $65B opportunity with autonomous driving ($10B), Internet of Things (IoT) ($30B), and network silicon ($25B). Intel's 2018 revenue was $9.5B, with >20% growth YoY. Source: Amalgamation of analyst data and Intel analysis. 2018 revenue based on a portion of OCG, PSG, IOTG, and Mobileye.
CLOUDIFICATION OF THE NETWORK & EDGE

TRADITIONAL NETWORK

NETWORK

THINGS

COMPUTE

ANALYTICS

STORAGE

INTELLIGENT NETWORK

THINGS

RAN/EDGE

NETWORK CORE

DATA CENTER/CLOUD

COMPUTE STORAGE ANALYTICS

COMPUTE STORAGE ANALYTICS

COMPUTE STORAGE ANALYTICS

COMPUTE STORAGE ANALYTICS

SCALABILITY & FLEXIBILITY FOR NETWORKING WORKLOADS

intel ETHERNET

intel SILICON PHOTONICS

move

store

process

software

OpenNESS DPDK

OpenVINO
“Our vision is to build a network that innovates at the speed of software and scales at the speed of cloud... leveraging best-in-class technology...to provide a high quality, cost-effective service to our customers.”

Tareq Amin, Group CTIO, Rakuten
DRIVING TRANSFORMATION TO CLOUD-BASED PLATFORMS

DELIVERING PORTFOLIO OF PRODUCTS FOR 5G AND EDGE

ON TRACK TO BASESTATION MSS >40% BY 2022

INTEL NETWORK REVENUE
~40% CAGR

CPU VOLUME
~20% CAGR

XEON ASP
10% CAGR

INTEL NETWORK REVENUE
~40% CAGR

> $4B

> 22% MSS

> $1B

8% MSS

2014 2016 2018

Source: Amalgamation of analyst data and Intel analysis. Based on Intel financials for a portion of DCG and PSG.
INTERNET OF THINGS BUSINESS

INTEL IOTG REVENUE
>10% CAGR

<table>
<thead>
<tr>
<th>Year</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>$2.1B</td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>$3.5B</td>
</tr>
</tbody>
</table>

16% MSS

Source: Intel Financials. MSS based on amalgamation of analyst data and Intel analysis. ASP & product mix based on 2018 CPU revenue.

AREAS OF FOCUS

AGGREGATION AT THE EDGE
VIDEO INFEERENCE
HIGH PERFORMANCE COMPUTE
INTERNET OF THINGS BUSINESS

INTEL IOTG + AD REVENUE
>15% CAGR

EXTENDING INTO
AUTONOMOUS DRIVING
& DATA SERVICES

$4.2B

MOBILEYE

An Intel Company

Source: Intel Financials.
The Data-Centric Opportunity is Massive
Largest opportunity in Intel’s history, over $200B TAM by 2023

Industry Mega-trends Leverage Our Strengths
Artificial Intelligence, Cloud, Cloudification of Network | Edge

Intel Has an Unparalleled Array of Assets to Fuel Growth
Portfolio of Leadership Products to Move, Store and Process Data
1x inference throughput baseline on Intel® Xeon® Platinum 8180 processor (July 2017) - Tested by Intel as of July 11th 2017: Platform: 2S Intel® Xeon® Platinum 8180 CPU @ 2.5GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2466 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.17.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC). Performance measured with: Environment variables: KMP_AFFINITY=granularity=fine, compact, OMP_NUM_THREADS=56, CPU Freq set with cpufreq frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe), revision f96b759f71b228183f69a0f267158b8b21505bC. Inference measured with “caffe time” command. For “ConvNet” topologies, synthetic dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50) and https://github.com/soumith/convnet_benchmarks/tree/master/caffe/imagenet_winners (ConvNet benchmarks; files were updated to use newer Caffe prototxt format but are functionally equivalent). Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.1700425. Caffe run with “numactl -l1.”

5.7x inference throughput improvement on Intel® Xeon® Platinum 8180 processor with Intel® DL Boost (December 2018) with continued optimizations - Tested by Intel as of November 11th 2018: 2 socket Intel(R) Xeon(R) Platinum 8180 CPU @ 2.5GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2466 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.17.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC). Performance measured with: Environment variables: KMP_AFFINITY=granularity=fine, compact, OMP_NUM_THREADS=56, CPU Freq set with cpufreq frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe), revision f96b759f71b228183f69a0f267158b8b21505bC. Inference measured with “caffe time” command, training measured with “caffe time” command. For “ConvNet” topologies, synthetic dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50), Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.1700425. Caffe run with “numactl -l1.”

4x inference throughput on Intel® Xeon® Platinum 8280 processor with Intel® DL Boost - Tested by Intel as of 2/20/2019: 2 socket Intel® Xeon® Platinum 8280 Processor, 28 cores HT On Turon Total Memory 384 GB (12 slots / 32GB / 2933 MHz, BIOS: S6CE20.868.00.01.0271.120720180605 (ucode: 0x200004d), Ubuntu 18.04.1 LTS, kernel 4.15.0-45-generic, SSD 1x sda INTEL SSDSC2BA80 SSD 745.2Gb, nvme1n1 INTEL SSDPE2KX040T7 SSD 3.7TB, Deep Learning Framework: Intel® Optimization for Caffe, Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.1700425. Caffe run with “numactl -l1.”

2x More inference throughput on Intel® Xeon® Platinum 9282 processor with Intel® DL Boost - Tested by Intel as of 2/25/2019: Platform: Dragon rock 2 socket Intel® Xeon® Platinum 9282 (56 cores per socket), HT ON, turbo ON, Total Memory 768 GB (52 slots / 32GB / 2933 MHz), BIOS: S6CC20.868.00.01.0241.112020180609, CentOS 7 Kernel 3.10.0-957.5.1.x86_64, 2666 ECC RAM. Deep Learning Framework: Intel® Optimization for Caffe: (http://github.com/intel/caffe), revision 3cc5f971b228183f69a0f267158b8b21505bC. Inference measured with “caffe time” command, training measured with “caffe time” command. For “ConvNet” topologies, synthetic dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50), Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.1700425. Caffe run with “numactl -l1.”

Performance measured with: Environment variables: KMP_AFFINITY=granularity=fine, compact, OMP_NUM_THREADS=56, CPU Freq set with cpufreq frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe), revision f96b759f71b228183f69a0f267158b8b21505bC. Inference measured with “caffe time” command, training measured with “caffe time” command. For “ConvNet” topologies, synthetic dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50), Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.1700425. Caffe run with “numactl -l1.”

Configuration Disclosure
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to www.intel.com/benchmarks.

Performance results are based on testing as of date specified in the Configuration Disclosure and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more at intel.com.

Intel, the Intel logo, EyeQ, Intel Agilex, Intel Atom, Intel Nervana, Intel Optane, Mobileye, Movidius, OpenVINO, Stratix, Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. © Intel Corporation.