TG01, a neo-antigen specific peptide vaccine targeting RAS mutations in solid tumours

Magnus Jaderberg
Chief Medical Officer
Targovax
The RAS gene is mutated in 90% of pancreatic cancer patients, making it an ideal target.

RAS mutations result in uncontrolled cell division.

There are no existing therapies targeting RAS.

Targovax has developed a unique vaccine against mutant RAS.
RAS exon 2 codon 12 and 13 mutation

- mutRAS proteins are trunk neoantigens and potential targets for T cells

- Usually only one mutation present in tumor but tumours with more than one mutation occur

- Different lesions in same patient can have different mutations

- Undetected mutRAS sub-clones in primary tumour drive recurrence and metastasis formation

- 3 isoforms of RAS (K, N, H) but identical protein sequences

GOAL: One vaccine targeting codon 12 and 13 mutations
Peptide cocktails for mutRAS immunisation

TG01
7 peptides covering > 99% of mutations in Pancreatic cancer

TG02
8 peptides covering > 99% of mutations in NSC-Lung cancer and Colorectal cancer (TG01 + 13C peptide)

- 17 amino acid peptides used as antigens
- HLA unrestricted - activate both mutRAS specific CD4+ and CD8+ T cells
- Recombinant human GM-CSF is used as local immune-modulator
 - The peptides lack inherent immunogenicity
The TG vaccine induces T-cells that recognize and destroy RAS mutated cancer cells

1. Activate immune system
 - TG vaccine **injected intradermally** and picked up by APCs

2. Induce mutRAS T-cells
 - CD4+ and CD8+ **mut-RAS T-cells induced** in the lymph node

3. Attack the cancer
 - mutRAS T-cells identify and **destroy RAS mutated cancer cells**
Formation of mutRAS specific CD4+ and CD8+ T-cells were validated in patients, both in blood and tumor biopsies

1. mutRAS specific CD4+ T cells kill the patient’s tumor cells* in vitro

CD4+ T cell clone from a RAS peptide vaccinated patient that recognize the same mutation (12V) as found in the patient’s tumor, can lyse and kill cancer cells (CPE) from the same patient (*in vitro*).

% Specific lysis (killing) of cells by CD4+ T cell clone

![Graph showing specific lysis of cells by CD4+ T cell clone](image1)

(Gjertsen et al., 1997)

2. mutRAS specific CD8+ T cells kill the patient’s tumor cells* in vitro

HLA B35 (tissue type) restricted CD8+ T cell clone from a RAS peptide vaccinated patient that recognize the same mutation (12V) as found in the patient’s tumor, can lyse and kill cancer cells (CPE) from the same patient (*in vitro*).

% Specific lysis (killing) of cells by CD8+ T cell clone

![Graph showing specific lysis of cells by CD8+ T cell clone](image2)

(Gjertsen et al., 1997)

3. mutRAS specific T-cell clones identified both in blood and tumor

CD4+ T cells with same T cell receptor clonality (TCR Vβ17), and recognizing the same mutation (12R) as found in the patient’s tumor, was found in both blood (PBMC) and tumor biopsy (TIL) from vaccinated patient.

Flow cytometric analysis (FACS) showing same clonality of T cells from PBMC and TIL

- **PBMC Clone**: 94% CD4+ TCRVβ17+ cells
- **TIL Clone**: 97% CD4+ TCRVβ17+ cells

![Flow cytometry images](image3)

(Gjertsen et al., 2001)

T cells specific for other RAS mutations than 12R were found in PBMC from patient but not in tumor

(Gjertsen et al., 2001)

www.targovax.com
"Reason to believe" in resected disease

Retrospective 10 year survival data from TG trials in resected pancreatic cancer (n=20, TG monotherapy)

- 4/20 (20%) of treated patients alive after 10 years
- 0/87 untreated patients alive in a similar cohort from the same period, at the same hospitals

Historical control: 7.7% 10 year survival

References:
1 Wedén et al., 2011
2 Oettle H et al., JAMA 2013, vol 310, no 14
“Reason to believe” in advanced disease

Clinical study in advanced pancreatic cancer (36 patients); Cocktail of 4 (of 7) TG01 peptides

Surviving fraction

A: No detectable immune response
B: Detectable immune response

- 19 of 36 (52%) patients had mutRAS immune response
 - Immune response measured as mutRAS specific skin DTH test, and mutRAS specific T cell proliferation in blood
- 3x longer median survival for responders
 - 144 days for immune-responders (n=19)
 - 48 days for non-responders (n=17)

(Gjertsen et al., 2001)
The five year survival rate for pancreatic cancer patients has not improved since the 1970s.

SOURCE: Cancer Research UK, graphic adapted from The Economist September 16 2017
Targovax was set up to validate the TG concept with adjuvant chemotherapy

Ongoing Phase I/II trial in resected pancreatic cancer with adjuvant Gemcitabine (SoC)

- 32 patients in 2 cohorts
- Single arm design, no control group
- The cohorts have different dosing regimens
- Chemo given with/wo TG
- TG booster injections up to 2 years post surgery
Interim data from soon completed phase I/II (ASCO 2017)

1st cohort (19 patients)
- Median survival 33.1 months vs. 27.6 for historical control
- 13 of 19 patients (68%) alive 2 years after surgery, vs. 30-53% in historical controls

2nd cohort (13 patients)
- 13 of 13 patients (100%) alive 1 year after surgery

mutRAS immune response (1 yr)
- 90% of patients (29/32) had RAS-specific immune activation

Safety
- TG01 and gemcitabine combination treatment is well-tolerated
- Four allergic reactions reported in 1st cohort, none in 2nd cohort (up to 1 year)
Interim TG01 data in context
As presented by TG01 PI Prof. Daniel Palmer, London, June 2017

Comparative survival rates across trials in resected pancreatic cancer

NOTE: Relative survival curves across studies (ESPAC), meant for indicative comparisons only. No Kaplan Meier analysis has been done of the TG01 study data. Instead 1 and 2 year survival as well as median OS have been plotted.
Clinical trial program overview

Pancreas, resected & non-resected
- Phase I
- >200 patients
 - 10 year survival data
 - Correlation between immune response and survival

Resected pancreas
- Phase I/II
- 32 patients
 - Encouraging median survival
 - 90% immune response

Colorectal
- TG02 - Phase I
- 20 patients
 - TG02, targets 8 mutations
 - Combination w/KEYTRUDA®
 - Currently recruiting patients

Resected pancreas
- TG01 - Phase IIb/III
- n = tbd
 - Ph IIb-III adaptive design
 - Aimed to reach registration
 - CPI combination arm
Why TG may succeed where others have failed

Lessons Learned

- **Target often poorly defined and not cancer specific**

The TG approach

- Mutated RAS is a well-defined neo-antigen, and a driving cause of cancer

- Insufficient immune activation of CD4+ helper and CD8+ killer T-cells

 - TG peptides are proven to induce both CD4+ and CD8+ mutRAS T-cells

- Most clinical trials have been done in advanced disease

 - Initial focus on resected patients, with stronger immune system
Resected pancreatic cancer is the lead indication, but all RAS mutated cancers are potential TG targets

1. **Pancreatic cancer (resected)**
 - TG01 lead indication
 - Completing phase I/II
 - Planning phase IIb/III
 - 40,000 patients

2. **Colorectal cancer**
 - TG02 lead indication
 - Phase I trial recruiting
 - 50% RAS mutated
 - Up to 500,000 patients

3. **Lung cancer (NSCLC)**
 - TG02 potential future indication
 - 30% RAS mutated
 - Up to 500,000 patients

4. **All mutRAS cancers**
 - TG02 + TG03 ultimate long-term potential
 - 30% of all cancers
 - Up to 30% of all cancer patients

Source: Global data, Riva et al. Plos One 2017

Estimated total addressable patient number with RAS mutations in US, EU and China

www.targovax.com
Thank you