Kirkland Lake Gold (the “Company” or “KL”) operates four gold mines, Fosterville in Victoria, Australia, and Macassa, Holt and Taylor in Ontario, Canada.

Fosterville Gold Mine operates under the Mineral Resources (Sustainable Development) Act (MRSDA), holding two mining licences, MIN5404 and MIN4456.

The 2017 Public Report is intended to provide information on the environmental and social performance of the operation at Fosterville Gold Mine.

This report is for the calendar year 2017 and all monetary amounts in the report are presented in Australian Dollars (AUD), unless otherwise indicated.

Kirkland Lake Gold is a member of the Minerals Council of Australia (MCA) and is signatory to Enduring Value – the Australian Mining Industry Framework for Sustainable Development.

As a signatory to Enduring Value, the Company is committed to continuous improvement in sustainable development performance through progressive implementation of the Sustainable Development (ICMM) principles and elements.

This report is available at [www.klgold.com](http://www.klgold.com)
2017 SUSTAINABILITY REPORT

1.0 About Kirkland Lake Gold
1.1 About Fosterville Gold Mine
1.2 Economic Benefits of the Operation
2.0 Environmental Management
  2.1 Overview of Environmental Management Plan
  2.2 Environmental Risks
3.0 Activities and Monitoring
  3.1 Noise
  3.1.1 Noise Abatement Projects
  3.2 Air Quality Depositional Dust
  3.3 Air Quality Hi Volume Dust
  3.3.1 Dust Abatement Projects
  3.4 Water Quality
4.0 Waste Management
5.0 Biodiversity
  5.1 Pest Plants and Animals
6.0 Blasting and Vibration
7.0 Cultural Heritage
8.0 Rehabilitation
  8.1 Final Concept Rehabilitation Plan
  8.2 Community Consultation
  8.3 Overview of Rehabilitation Activities 2017
  8.4 Revegetation Activities During 2017
  8.5 Rehabilitation Monitoring
  8.5.1 Spray Drift Vegetation Monitoring
  8.5.2 Revegetation Monitoring
  8.5.3 Landscape Function Analysis
9.0 Community Engagement
  9.1 Overview of Community Engagement Plan
  9.2 Overview of Community Engagement Activities
  9.2.1 Complaints
  9.2.2 Activities
10.0 Compliance Record
10.1 Reportable Events
Kirkland Lake Gold’s production profile is anchored by two high-grade, low-cost operations, the Macassa Mine in Northern Ontario, and the Fosterville Mine in Victoria. The Company’s solid base of quality assets is complemented by district-scale exploration potential, supported by a strong financial position and extensive management expertise. The Company has achieved significant growth since completing two acquisitions in 2016: St Andrew Goldfields, which added three mines and extensive exploration land in Northern Ontario; and Newmarket Gold, which added its Australian operations. Through the advancement of its exploration and development project pipeline and by maintaining a portfolio of quality assets with a large base of Mineral Reserves and Mineral Resources, Kirkland Lake Gold is targeting growth to over one million ounces of annual production over the next five to seven years.

The Company believes that the potential to identify new sources of production through exploration success, extending mine life at existing deposits, and utilizing excess milling capacity at each of its operations can support future organic growth to increase value for its shareholders.
1.1 About Fosterville Gold Mine

The Fosterville Gold Mine ("FGM") is located within the City of Greater Bendigo Municipality approximately 20 km east of Bendigo in Central Victoria on the historic Ellesmere (now known as Fosterville) goldfields, see Figure 1. Now owned by KL, Fosterville is the lowest-cost operation within the Company's portfolio, with 2017 all-in sustaining costs of $635 (US$491) per ounce. The Mine and all associated infrastructure including the tailings dams and waste dumps are located on Mining Lease 5404 (MIN5404). MIN5404 was initially granted as ML1868 on 24th August 1990. The licence later merged with adjoining lease MIN4877, resulting in MIN5404. In December 2012 another mining lease (MIN5565) was granted to FGM, and this licence was also merged into MIN5404. The present MIN5404 has a total area of 17.157 km² and is active until August 24, 2020. MIN4456, located adjacent to MIN5404, is a smaller lease that has a total area of 0.095 km² and is active until August 24, 2020.

The Fosterville tenement contained areas of pasture, previously cleared for grazing and cropping, and scattered remnants of a vegetation community, the majority of which is Box-Ironbark Forest. The dominant eucalyptus species in the forest include Grey Box, Red Box, Yellow Box, White Box and Red Ironbark. The majority of the scattered forest communities are comprised of regrowth due to clearing and disturbance by historic mining activities and timber harvesting. The project area contains many small rural farms and covers foothills and old river terraces between the Sugarloaf Range and the Campaspe River, which runs roughly parallel to the eastern lease boundary at a distance of approximately 1 km.

There were originally 21 open pits, 2 heap leach areas and associated waste dumps from historic mining operations prior to the sulphide project upgrade in 2004. Current land use is divided between the mining operations, agriculture (grazing, crops, vineyards) on private and company-owned land, native forest and Crown Land. The mining operations consists of back filled pits, 3 in pit tailings facilities, 12 open pits, 4 surface tailings facilities, an underground mine with two portals that exit into open pits and associated water dams and infrastructure.

A feasibility study into a sulphide mining operation was completed in 2003, which included an Environmental Effects Statement. Construction and open-pit mining commenced in early 2004 and commercial production commenced in April 2005. Ore was initially sourced solely from open-pit mining with the deepening of the Ellesmere and Falcon Pits. The underground mine commenced declining in March 2006 with production first recorded in September 2006. The current operation sources all of its ore from the underground orebodies.
1.2 Economic Benefits of the Operation

The Fosterville Gold Project was originally based on an underground mine and ore processing facilities capable of mining and processing approximately 800,000 tonnes per annum of primary (sulphide) ore.

Exploration progress in 2017 resulted in a new mineral reserve and resource estimate at December 31, 2017 which increased underground reserves to 1.7M ounces at an average of 23.1g/t Au. The average underground reserve grade estimate has increased and this has been supported by down-plunge extensions of the high-grade, visible gold-bearing Lower Phoenix Gold System.

In particular, the Swan Zone has doubled to 1.16M ounces at an average grade of 61.2 g/t.

Since the commencement of commercial gold production in April 2005, the sulphide plant at Fosterville Gold Mine has produced 1,416,218 ounces of gold up to the end of December 2017 (see Figure 2). This production was initially sourced solely from open-pit mining with underground mining starting to contribute from late 2006. The Harrier open cut was initially completed in December 2007 and, since that time, the underground mine has been the primary source of ore.

Ore sourced from a series of pit expansions on the previously mined Harrier, John’s and O’Dwyer’s South pits between Q1 2011 and Q4 2012 has provided supplementary feed to underground ore sources. Since the beginning of 2013, underground operations have been the sole provider of mill feed at Fosterville.

(F) = Forecast

2018 forecast production is as at January 17, 2018. Subsequent to initial publication of the Fosterville Gold Mine Sustainability Report January to December 2017, Fosterville’s 2018 forecasted production was revised to 275,000 - 300,000 ounces (August 1, 2018) and then improved to 300,000 - 310,000 ounces (October 30, 2018).
Current mining activities are focused on the Central, Phoenix and Harrier underground areas. Processing of the Fosterville ore is achieved through a simple single stage jaw crushing circuit followed by a SAG mill. The sulphides are separated using a 3 stage flotation circuit. A gravity circuit recovers the coarser gold from the sulphide concentrate prior to its oxidization by a Bio-oxidation circuit; with the residue washed through a counter current decant (CCD) circuit, before being leached in a conventional CIL circuit. The tails from the CIL circuit are heated (Heated Leach) to recover a portion of the preg-robbed gold, before being pumped to a CIL residue storage dam. The flotation residue and the neutralized liquor from the CCD circuit are combined and pumped to a residue storage facility.

### Table 2.
**Employee Full Time Equivalent Employment**

<table>
<thead>
<tr>
<th>Department</th>
<th>Actual FTE's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining</td>
<td>254.25</td>
</tr>
<tr>
<td>Processing</td>
<td>64.35</td>
</tr>
<tr>
<td>Geology</td>
<td>26.33</td>
</tr>
<tr>
<td>Admin / Safety / Environment / HR</td>
<td>29.75</td>
</tr>
<tr>
<td>Contractors</td>
<td>152</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td><strong>526.68</strong></td>
</tr>
</tbody>
</table>

Fosterville Gold Mine makes a substantial contribution directly to the local and regional economy through employment, the supply chain, government revenue and community sponsorship and grants programs. Total economic support of the local community in 2017 is outlined in Table 3.

### Table 3.
**Economic support of the local community**

<table>
<thead>
<tr>
<th>Department</th>
<th>FGM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wages 2017</td>
<td>$55,535,727</td>
</tr>
<tr>
<td>Goods &amp; Services 2017</td>
<td>$108,854,563</td>
</tr>
<tr>
<td>Community Grants 2017 Total</td>
<td>$20,614</td>
</tr>
<tr>
<td>Sponsorship / Donation 2017 Total</td>
<td>$13,543</td>
</tr>
</tbody>
</table>

Other indirect contributions to the local community economies that are not measured come from our employees and their families living in the local communities. Students have also been given the opportunity to work onsite during their university break this academic year, with the mine taking on 12 students who received the opportunity to learn about the operation and mining.

The Fosterville Gold Mine operates an underground mining operation and a mineral processing plant capable of processing 800,000 tonnes per annum. Mining, processing and associated operations operate 24 hours a day, 365 days a year. Employee numbers are outlined in Table 2.
ENVIRONMENTAL MANAGEMENT

2.1 Overview of Environmental Management Plan

The Fosterville Environmental Management Plan (EMP) was prepared to address operational and environmental risks associated with the operations.

The EMP is supported by a number of key documents, such as an environmental risk register, an environmental effects statement and an environmental monitoring program, designed as tools to achieve the objectives of the Fosterville Environmental Policy.

The environmental risk register assesses all hazards and associated impacts via the methods outlined in the Department of Economic Development, Jobs, Transport and Resources (DEDJTR) Risk-based work plan - Guidelines for mining industry projects.

The EMP summarizes the relevant environmental factors potentially associated with each section of the operation, including information on prevention, minimization and mitigation measures for any potential environmental impacts.

The EMP also details the monitoring and reporting processes, engagement with the relevant stakeholders, including local community and management practices for each key area of potential environmental or community risk.

2.2 Environmental Risks

Key areas of environment or community risk for the Fosterville operation are air quality, noise emissions, water management, waste management, biodiversity, blasting and vibration, cultural heritage and visual amenity. A summary of the impacts and mitigation control measures undertaken at Fosterville for each key area of risk are outlined in Table 4.
### Table 4. Fosterville Gold Mine (FGM) Environmental risk hazards and controls.

#### Noise

<table>
<thead>
<tr>
<th><strong>SOURCE OF RISK</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FGM’s operations generate noise from a variety of sources. Operational activities and risk sources that may generate off-site noise disturbance include but are not limited to:</td>
<td></td>
</tr>
<tr>
<td>• Vehicle movements;</td>
<td></td>
</tr>
<tr>
<td>• Processing operations;</td>
<td></td>
</tr>
<tr>
<td>• Ancillary infrastructure -power transmission &amp; pumps;</td>
<td></td>
</tr>
<tr>
<td>• Surface and underground blasting; and Exploration activities.</td>
<td></td>
</tr>
</tbody>
</table>

Noise levels at nearby sensitive receptors vary depending on the location and elevation of the noise source, intervening topography, climatic conditions, background noise levels and any engineered noise attenuation barriers present.

<table>
<thead>
<tr>
<th><strong>IMPACTS</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Licence breach;</td>
<td></td>
</tr>
<tr>
<td>• Reduced amenity at sensitive receptors (e.g., general nuisance and discomfort);</td>
<td></td>
</tr>
<tr>
<td>• Potential health impacts of sensitive receptors (e.g., sleep disturbance); and</td>
<td></td>
</tr>
<tr>
<td>• Fauna disturbance.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>CONTROLS</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Orientation of plant and equipment;</td>
<td></td>
</tr>
<tr>
<td>• Consideration of noise during the planning, design and equipment procurement;</td>
<td></td>
</tr>
<tr>
<td>• Implement maintenance regimes to minimise noise from plant and equipment;</td>
<td></td>
</tr>
<tr>
<td>• Apply noise mitigation technologies (e.g., mufflers, acoustic screens) to existing plant and equipment;</td>
<td></td>
</tr>
<tr>
<td>• Install acoustic barriers or engineering controls;</td>
<td></td>
</tr>
<tr>
<td>• Restrict/minimise the operation of noisy plant and equipment, or activities on-site;</td>
<td></td>
</tr>
<tr>
<td>• Engage with community and plan operational activities to minimise noise and manage impacts appropriately;</td>
<td></td>
</tr>
<tr>
<td>• Undertake noise modelling for potentially high impact noisy activities, plant or equipment; and</td>
<td></td>
</tr>
<tr>
<td>• Educate and train personnel and contractors, through site inductions and appropriate procedures, on potential noise impacts and noise minimisation strategies.</td>
<td></td>
</tr>
</tbody>
</table>

#### Air Quality

<table>
<thead>
<tr>
<th><strong>SOURCE OF RISK</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations have the potential to cause off site impacts of the air quality around site if actions are uncontrolled. Key activities that may affect the air quality of offsite sensitive receptors include but are not limited to:</td>
<td></td>
</tr>
<tr>
<td>• Trucks dumping rock;</td>
<td></td>
</tr>
<tr>
<td>• Moving material (wheel generated dust and ore conveyors);</td>
<td></td>
</tr>
<tr>
<td>• Stockpiles stacking;</td>
<td></td>
</tr>
<tr>
<td>• Primary rock crushing on the ROM pad;</td>
<td></td>
</tr>
<tr>
<td>• Wind erosion from stockpiles, tailings storage facilities or exposed areas;</td>
<td></td>
</tr>
<tr>
<td>• Ventilation shafts; and</td>
<td></td>
</tr>
<tr>
<td>• Surface drilling.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>IMPACTS</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Licence breach;</td>
<td></td>
</tr>
<tr>
<td>• Reduced air quality amenity at sensitive receptors; and</td>
<td></td>
</tr>
<tr>
<td>• Health impacts at sensitive receptors.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>CONTROLS</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Use of water cart on roads and exposed surfaces;</td>
<td></td>
</tr>
<tr>
<td>• Dust suppression sprays and sprinklers;</td>
<td></td>
</tr>
<tr>
<td>• Application of chemical bonding agents to exposed areas;</td>
<td></td>
</tr>
<tr>
<td>• Cessation of works during high wind conditions;</td>
<td></td>
</tr>
<tr>
<td>• Mechanised dust collectors on conveyors and crushers;</td>
<td></td>
</tr>
<tr>
<td>• Operating procedures;</td>
<td></td>
</tr>
<tr>
<td>• Reduce vehicle speed in higher risk potential dust generation areas;</td>
<td></td>
</tr>
<tr>
<td>• When clearing vegetation, minimising exposed areas by progressively clearing; and</td>
<td></td>
</tr>
<tr>
<td>• Progressively establish vegetation on topsoil/overburden stockpiles and rehabilitated landforms.</td>
<td></td>
</tr>
</tbody>
</table>

Air Quality

Operations have the potential to cause off site impacts of the air quality around site if actions are uncontrolled. Key activities that may affect the air quality of offsite sensitive receptors include but are not limited to:

- Trucks dumping rock;
- Moving material (wheel generated dust and ore conveyors);
- Stockpiles stacking;
- Primary rock crushing on the ROM pad;
- Wind erosion from stockpiles, tailings storage facilities or exposed areas;
- Ventilation shafts; and
- Surface drilling.

**IMPACTS**

- Licence breach;
- Reduced air quality amenity at sensitive receptors; and
- Health impacts at sensitive receptors.

**CONTROLS**

- Use of water cart on roads and exposed surfaces;
- Dust suppression sprays and sprinklers;
- Application of chemical bonding agents to exposed areas;
- Cessation of works during high wind conditions;
- Mechanised dust collectors on conveyors and crushers;
- Operating procedures;
- Reduce vehicle speed in higher risk potential dust generation areas;
- When clearing vegetation, minimising exposed areas by progressively clearing; and
- Progressively establish vegetation on topsoil/overburden stockpiles and rehabilitated landforms.
Surface Water

**SOURCE OF RISK**
The surface water management plan is an integral part of the overarching EMP and the objective is to minimise impact on surface water quantity, flow paths and quality.

Operational activities that may affect surface water include:
- Constructing landforms that change the catchment hydrology;
- Operating dams associated with the site water management system;
- The storage and use of hazardous materials (processing chemicals and hydrocarbons) onsite;
- Clearing land for operational purposes;
- Storage and transfer of tailings and other mineral wastes; and
- Treatment and disposal of septic wastes.

**IMPACTS**
- Increased turbidity from mobilisation of sediment from exposed areas and overburden stockpiles;
- Contamination from hydrocarbons or chemical spills;
- Changed water flow paths, quantities and/or velocities;
- Reduced water flows entering the local drainage systems due to capture of rainfall in dams and pits; and
- Contaminated groundwater or process water entering surface water systems.

**CONTROLS**
- Diversion of runoff away from or around disturbed areas;
- Capture runoff from disturbed areas on site into sediment dams;
- Identify all pollution sources and design treatment measures based on relevant guidelines;
- All runoff to be directed away from open pits, vent shafts or underground workings to reduce surface water & groundwater interactions;
- Progressive rehabilitation to minimise the area of disturbed surfaces within the mining lease;
- Reclaim topsoil for use in rehabilitation;
- All chemicals and hydrocarbons are stored in appropriately bunded structures;
- Prevent erosion or silting of diversion drains through the maintenance of adequate slope and flow rates;
- All surface water storages will be monitored to ensure control measures are effectively working; and
- Tailings dams are annually independently audited to ensure management practices are appropriate.

Ground Water

**SOURCE OF RISK**
Operational activities that may affect groundwater levels include:
- CDewatering the underground mine and open pits;
- Storage of mine water in open cut pits; and
- Storage of mine tailings and process water.

Operational activities that may affect groundwater levels include:
- Seepage from the storage of mine tailings and process water;
- Exposure to underground and open pit workings; and
- The storage and use of hazardous materials (processing chemicals and hydrocarbons) onsite.

**IMPACTS**
- Contamination of groundwater from process water or tailings;
- Oxidization of exposed rock generating acid;
- Contamination of groundwater from chemicals or hydrocarbons due to spills;
- Decreasing groundwater levels around areas of dewatering affecting vegetation and stability;
- Decreasing groundwater levels around areas of dewatering affecting other groundwater users; and
- Increasing groundwater levels around tailings storage facilities and open cut pits by increasing hydraulic pressure and creating areas of water logging and increased salinity.

**CONTROLS**
- Storage of process water and mine tailings in appropriate facilities;
- Tailings storage facilities are engineered and maintained to prevent seepage of process water into the groundwater;
- All chemicals and hydrocarbons are stored in appropriately bunded structures;
- PAF testing undertaken on exposed materials in open pits and underground to ensure water quality is maintained;
- Tailings dams are annually independently audited to ensure management practices are appropriate;
- Regular inspections, monitoring and auditing of mine water facilities and infrastructure; and
- Regular monitoring and reporting of groundwater bores (quality and levels).
Blasting and Vibration

**SOURCE OF RISK**
FGM operations that generate ground vibrations and sound waves and have the potential to generate fly rock through daily blasting operations. Although the majority of the mining activities are underground there are infrequent open pit operations that involve surface blasting.

**IMPACTS**
- Private Property – Amenity & Infrastructure;
- Air quality;
- Public Safety;
- Public infrastructure; and
- European Heritage.

**CONTROLS**
- Predicting calculations of charge weights, firing plans, drill and blast plans, electronic detonators and timing of blasts to minimise the ground vibration or air blast felt by the surrounding community;
- Restricting the number of blast holes fired at the same instance of time to minimise blast vibration and to ensure noise limits will not be exceeded;
- Open pit operations - blasting between 7am and 5pm Monday to Friday and between 7am and 1pm Saturday;
- Underground operations - blasting primarily between 6:30am – 7:00am and 6:30pm – 7:00pm, 7 days per week, 52 weeks per year;
- Public road closures;
- Blast exclusion zones for pit firings;
- Public communication/signage; and
- Monitoring at residences.

Waste Management

**SOURCE OF RISK**
Sources of Hazardous Waste stored and utilised at Fosterville include diesel storage tanks, diesel refueling stations, lime storage silos, processing chemical storage (floculate, promotor, acid, nutrients), hydrocarbon storage (emulsion, oil, grease) and LPG bullets.

Other forms of waste include tailings storage facilities and waste rock dumps.

**IMPACTS**
- breach licence conditions;
- degradation of biodiversity;
- impact to public health and safety;
- clean-up costs;
- Company reputation;
- community and regulator trust (social licence to operate);
- degradation of agricultural land;
- pollution of waterways; and
- contamination of groundwater aquifers.

**CONTROLS**
- Waste management is conducted according to a management plan which includes correct storage, separation and disposal of all of the waste types;
- All chemicals and hydrocarbons are stored in appropriately bunded structures;
- Documented procedures for spills and appropriate clean up;
- The tailings storage facilities have been designed by suitably qualified and experienced consultants to meet the Australian National Committee on Large Dams (ANCOLD) guidelines and Department of Economic Development, Jobs, Transport and Resources – Tailings Storage Guidelines for Victoria;
- Operation of tailings facilities is in accordance with the Operations Manual including freeboards;
- Routine monitoring, reporting and auditing of waste facilities and communication with stakeholders occurs;
- Overburden waste rock dump designed to minimise impact;
- Progressive rehabilitation of dumps; and
- Waste rock management plan to assist with characterisation of rock type, and to ensure appropriate storage and encapsulation occurs and engineering caps are appropriate.
### Cultural Heritage

**SOURCE OF RISK**
Cultural heritage was considered initially in the 1998 EES and 2004 Work Plan completed for the upgraded sulphide project. There were no cultural sites threatened by the new project. The mining lease MINS404 was granted prior to enactment of the Commonwealth Native Title Act of 1993 and as such is not subject to any Native Title compensation claims or following renewal.

Activities that may impact Cultural heritage are:
- Activity – Plant and Equipment;
- Drilling;
- Overburden dumps and stockpiles; and
- Slimes Storages (Tailings) Facilities.

**IMPACTS**
- Damage or destruction of cultural or heritage features;
- Social Licence to Operate; and
- Licence Breach.

**CONTROLS**
- Training and inductions includes the correct procedure if an artefact is found during the course of normal mining procedures;
- Permit to dig system;
- Land clearance certificate system;
- Mine and project planning;
- Aboriginal archaeological survey;
- Ensuring buffer zones of minimal distance are maintained from recorded scar trees; and
- Protecting European historical features.

### Visual Amenity

**SOURCE OF RISK**
Operational activities that impact visual amenity are as follows:
- Overburden dumps and stockpiles;
- Slimes dam (TSF);
- Heap leach;
- Drilling; and
- Flying drone.

**IMPACTS**
- Community visual amenity; and
- Retail value of properties.

**CONTROLS**
- Consider visual amenity in planning process;
- Utilise revegetation to provide a screen along road reserves and property boundaries to assist in reducing the visual impact of mining landforms;
- Visual amenity bunds such as earthen walls or sea containers are utilised to obstruct the view into the mining lease;
- Communication with community prior to constructing new facilities that will impact on their visual amenity;
- Consider visual amenity in mine closure planning; and
- Construct all new mining landforms to Government approved levels and where possible levels of historical mining facilities are also decreased.
3.1 Noise

Noise monitoring was undertaken on a weekly basis at nine locations around the Fosterville Mine site. Each week included various 30 minute monitoring sessions during the day, evening and night periods which were conducted by a noise technician using a calibrated noise meter. Any mine and background noise was recorded and described.

As shown in Table 5, out of 565 monitoring sessions there were six noise breaches which were all recorded during the night time monitoring program. Each breach included an investigation, remedial actions and a report to the appropriate regulators.

<table>
<thead>
<tr>
<th>Department</th>
<th>Day Time Period</th>
<th>Evening Time Period</th>
<th>Night Time Period</th>
<th>Total Monitoring Sessions</th>
<th>Breaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit - Rural Living Zones</td>
<td>46</td>
<td>41</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit Farming Zones</td>
<td>45</td>
<td>38</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>39</td>
<td>5</td>
<td>6</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>February</td>
<td>32</td>
<td>5</td>
<td>5</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>March</td>
<td>32</td>
<td>6</td>
<td>10</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>April</td>
<td>31</td>
<td>5</td>
<td>6</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>May</td>
<td>40</td>
<td>2</td>
<td>8</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>June</td>
<td>33</td>
<td>8</td>
<td>7</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>July</td>
<td>37</td>
<td>6</td>
<td>6</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>August</td>
<td>34</td>
<td>5</td>
<td>9</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>September</td>
<td>32</td>
<td>5</td>
<td>7</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>October</td>
<td>40</td>
<td>6</td>
<td>5</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>November</td>
<td>32</td>
<td>9</td>
<td>7</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>December</td>
<td>33</td>
<td>6</td>
<td>6</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td><strong>YTD TOTALS</strong></td>
<td><strong>415</strong></td>
<td><strong>68</strong></td>
<td><strong>82</strong></td>
<td><strong>565</strong></td>
<td><strong>6</strong></td>
</tr>
</tbody>
</table>
A continuous noise study was undertaken to determine the amount of noise attributable to the operation at various locations and also to determine specific time periods when the operation may be more audible. Further continuous noise modelling was also recommended to be completed in 2018, to assist in triangulation of noise sources and to allow specific noise mitigation to be undertaken if required in certain areas. AECOM also assisted the Company with modeling predictions specifically for new infrastructure projects, with models for the paste plant and new vent shaft projects completed during the year. The consultants utilised the noise limits for the operation, the current noise emissions recorded by the ongoing monitoring program and modelling to predict the possible resulting noise levels once the new infrastructure had been constructed. The studies ensure that any noise mitigation requirements are incorporated from the planning and design stages, assisting the operation to continue to meet the site noise limits.
3.1.1 Noise Abatement Projects

Key noise abatement projects for 2017 included the following:
A custom designed and built noise attenuation cover was installed over a BIOX agitator, which has decreased the noise output by up to 6dBA close to the source. Two additional diamond drill rig noise attenuation sheds were built by Deepcore Drilling, a Victorian based diamond drilling company, for use during the exploration surface drilling program. Improvements on previous designs include directional fan covers, which direct air from the sheds air-conditioning units away from sensitive receptors. Some operational changes have also been implemented including limited night time activity at the limestone mixing plant and the use of an excavator on the stockpile, which allowed reduced night time crushing activities.

CASE STUDY

DEEPCORE NOISE ATTENUATION SHEDS

These unique, innovative drilling solutions have been specifically designed and manufactured to meet the needs of the drilling contractor, the mine and the local community.

They result in a reduction from approximately 80-85db inside the working area by approximately 26dBA at 30m from the shed with all drilling and ancillary activity noise captured within the shed. Deepcore engaged an independent occupational hygienist to complete a report on the exact specifications of noise, particulate and airflow, with the original design developed in 2009 with further modifications undertaken over the years. Airflow specialists involved in the design have ensured a safe working environment, maintaining air quality and operator comfort with improved operator protection from conditions. A new design was created in late 2016 with manufacturing completed in May 2017. The sheds can be dismantled, moved and reassembled in 2 days, the sheds are specifically designed to be built with a small mobile crane reducing manual handling exposures. The sheds were developed by local Bendigo companies Deepcore Drilling and ICA, both with facilities in Epsom. Other environmental improvements as a result of the sheds include the effective capture and containment of drilling fluids and spoil, green paint on the exterior surface of the sheds which reduces visual impact, a reduction in noise and light pollution and a reduction in the drill footprint compared to traditional large and heavy weight truck mounted drills.
3.2 Air Quality Depositional Dust

Dust deposition rates were monitored on a monthly basis at eleven static locations around the Fosterville Site, with two new sites added in 2017. The quantity of material deposited during each month was analysed to enable determination of deposition rates for total insoluble material, which comprises non-combustible material (ash) and combustible material. Ash content provides an indication of the mineral content of a sample. The mineral content may be attributable to mining, but may also be attributable to other sources such as agricultural activities and vehicles on unsealed roads.

The combustible material will not be attributable to mining as this is mostly organic matter. Figure 3 shows the levels of total insoluble matter, ash and combustible material deposited at the monitoring locations during 2017. The results show two exceedances of total dust content at site FA6 and FA1 above the compliance limit of 4 g/m².mth. However both were below the limits in regards to the ash content, which is the mineral content attributable to mining and other activities.

Figure 3. Depositional Dust Monitoring Results.
3.3 Air Quality High Volume Dust

Ambient air quality is monitored using a High Volume Air Sampler (HVAS) at a sensitive receptor near the mine site. During 2017 a second HVAS machine was installed to the south of the mine site which allows background readings to be measured at different sides of the operation. Initially there were some issues with excessive noise being emitted from the new HVAS machine, which resulted in no PM2.5 measurements being collected until the issue was resolved.

Monitoring was undertaken every three days and measured the particulate load in the air less than 2.5 and 10 microns (µg/m³) over a 24 hour period. Figure 4 shows the PM10 dust results for 2017. From these results it can be observed that there were no PM10 dust exceedances. Figure 5 shows the PM2.5 dust results for 2017. The results show two PM2.5 exceedances over the compliance limit of 36 µg/m³. One exceedance was during May for HVAS 1 at 36.7 µg/m³; there were farmers burning off in the area that day and smoke was visible. There were no unusual activities occurring on the mine site therefore it is believed the exceedance is due to external factors. There was also an exceedance in October at HVAS2 with 36.4 µg/m³, just above the compliance limit. Weather results indicate that the day had a North Westerly wind direction, which had increased to a high wind later in the day. HVAS1 on the same day, had a PM2.5 reading of 18.4 µg/m³. It is likely the operations contributed to the overall reading recorded at HVAS2.
3.3.1 Dust Abatement Projects

DustTreat dust control binding agent was applied to 4.5 ha of the Carbon in Leach (CIL) tailings area in December 2016 as a trial. Monitoring of the trial area using photos and video indicated that DustTreat provided a semi-permanent and rain resistant crust, which controlled dust during windy conditions. This product was used again during September 2017 over the CIL hardstand on non-trafficked areas to reduce dust blowing off of the walls, it was sprayed over a total of 2.64 ha of surface area.

3.4 Water Quality

Water quality monitoring of Groundwater and Surface Water sites was undertaken throughout 2017 in accordance with the 2017 Consolidated Work Plan and Annual Sampling Schedule. The monitoring frequency of each site is determined on a risk based approach and varies from monthly, quarterly, 6 monthly and annually.

There were no significant breaches in water quality observed during the 2017 routine water monitoring program.

The mine water treatment plant planning has been ongoing throughout 2017, with construction expected to be completed in 2018. Initial pilot tests indicate water quality will be high and suitable for reuse on site as well as potentially being used for aquifer injection. Aquifer injection involves pumping water which was removed from the aquifer during mine dewatering back into the aquifer after it has been treated to improve the water quality.

Additional monitoring has been ongoing regarding the water quality of underground water and further investigation will be undertaken in the coming year once the mine water treatment plant is functional.
The study area included approximately 18 km of the Campaspe River that runs parallel to and East of the operation. The sampling sites occur between 7 km to 25 km downstream of the Lake Eppalock weir, which discharges into the Campaspe River. Flows in this reach of the river are directly impacted by discharge volume from Lake Eppalock.

Flows in this reach of the river are directly impacted by discharge volume from Lake Eppalock. Moving downstream from Lake Eppalock increases in turbidity and decreases in dissolved oxygen were seen. Elevated electrical conductivity, nutrients and lead were also indicated, typical of mixed agriculture and urban waterways.

The survey included sampling of macrophytes, macroinvertebrates and fauna. The aquatic fauna survey recorded 13 species including 7 fish, 3 invertebrates, 2 reptiles, 1 mammal and 1 amphibian. A large number of platypus being found indicated a healthy ecosystem and a Murray River turtle was also recorded which is thought to have been the first recorded in the area.

The Campaspe river health study was conducted to provide a baseline of the health of the Campaspe river.
4.0

WASTE MANAGEMENT

Efforts continued during 2017 to reduce the volume of waste going to landfill by reducing, reusing and recycling as much waste as possible.

Each waste contractor collates and provides data to the operation which is analysed by Fosterville Gold Mine staff on a monthly basis. Waste totals are provided below in Table 6.

34% of solid waste taken offsite was recycled, see Figure 6.

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Waste Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inert general solid waste</td>
<td>466 t</td>
</tr>
<tr>
<td>Hydrocarbon solid waste</td>
<td>46 t</td>
</tr>
<tr>
<td>Comingle recycling</td>
<td>2 t</td>
</tr>
<tr>
<td>Paper and cardboard recycling</td>
<td>20 t</td>
</tr>
<tr>
<td>Steel recycling</td>
<td>208 t</td>
</tr>
<tr>
<td>Copper recycling</td>
<td>7 t</td>
</tr>
<tr>
<td>Batteries recycling</td>
<td>36 t</td>
</tr>
</tbody>
</table>

Figure 6. Waste to Landfill vs Recycling (2017)
5.0 BIODIVERSITY

A Fauna Survey was undertaken during 2016, in both autumn and spring, with the results being released in 2017.

The surveys were undertaken with an aim to increase the existing knowledge of fauna species and activity within the mining lease area, with a particular emphasis on the presence, or likelihood of occurrence of significant fauna species. Five broad habitat types were identified; Box-Ironbark Woodland, Grassy Eucalypt Woodland, Grazing Pasture, Revegetation and Riparian/Artificial Waterbodies. Box Ironbark Woodland was found to be the most widespread habitat, with small hollows available to provide habitat for species such as small parrots, lorikeets and micro bats.

A few larger hollows were also available for species such as possums, gliders and cockatoos. A variety of species were observed during the survey including woodland birds, possums, echidnas, tawny frogmouth and bearded dragons. Many species were also noted to be utilising rehabilitation with abundant bird species including; Welcome Swallow, Wedge-tailed Eagle and Peregrine Falcon which were all observed in the open areas adjacent to rehabilitation.

5.1 Pest Plants and Animals

Key areas were sprayed for weeds throughout the year as required, with particular attention being paid to topsoil piles. This was undertaken by a contractor who specialises in pest plant control. FGM’s annual pest animal control program was undertaken. Fox baiting occurred during December 2016 through to February 2017.

This was undertaken by a contractor who specialises in pest animal control. A total of 42 fox baits were taken from various areas across the mining lease. Some rabbit control was also undertaken via the release of the calicivirus, which was also being undertaken as a widespread control method around the region by other stakeholders.
6.0 BLASTING AND VIBRATION

Blast vibration monitoring occurred to the south of the mining lease during the year.

An additional blast meter was installed on 20th April 2017 to increase monitoring any impacts from mining activities within the Harrier mine. There were no blasts over the mining licence limits during 2017 as can be seen in Figure 7.

Figure 7. Blast readings for 2017
A cultural heritage study was undertaken by consultants during 2017 to update the Aboriginal and historical cultural heritage values determined during studies undertaken in the preparation of the 1996 Environmental Effects Statement.

MIN5404 has fourteen Aboriginal cultural heritage places registered within the study area, twelve are scarred trees and two are artefact scatters. The traditional owners of the study area are the Dja Dja Wurrung. In addition twelve heritage places associated with historical mining activities and places were identified as well as two residential house ruins associated with domestic life during the gold rush.

**CASE STUDY**

**FOSTERVILLE'S GOLD MINING HERITAGE**

Most of the early mining activity in the Fosterville area occurred between 1894 and 1930, when the area was originally named Ellesmere.

Fosterville was first settled around 1842 for sheep farming, however due to a lack of profitability stock was sold off. During this period, tree bark-stripping became an important industry and following the Gold Rush in Bendigo, the timber industry became increasingly important for the construction of dwellings and at later stage the construction of mine shafts. Gold was discovered in 1852 and in 1894 extensive mine workings began and the place was named Fosterville after it was visited by the Minister for Mines, Henry Foster. A water supply channel was constructed in 1895 for the treatment of mine crushing's and township lots were marked out. Several companies and individuals operated mines and by the end of 1896 there were 800 mine employees. Fosterville remained a farming community during this time and the area was known as ‘Poor Man's Goldfield’. Most of the mines were small operations up until 1986 when the first large company was registered. At this time the township of Fosterville numbered at least 300 residents, and huts and tents were being replaced by weatherboard cottages. The government attempted to stimulate interest in the area due to an excess of laborers in the colony. The government provided funds to build a 400 feet shaft to test the reef between 1900 and 1902, however gold was not found, though the shaft was just west of some of the richest ore which has been found in recent years.
Fosterville Gold Mine is currently in full operational mode and site closure is not imminent, therefore concepts for final rehabilitation are still quite broad. This will allow flexibility for progressive rehabilitation to continue as the mine site changes into the future, while still considering and incorporating final rehabilitation concepts into the design and location of any new infrastructure.

As per the rehabilitation plan objectives, final land uses will aim to return sites to a similar vegetation function and structure as existed prior to the mining operations disturbing the area, if this is suitable for the new landform. Other end land use options will be explored with relevant stakeholders where a return to similar vegetation function is not practicable. A concept map of the possible final landform design is shown in Figure 8.
8.2 Community Consultation

FGM has a long history of stakeholder engagement regarding rehabilitation and closure. Initial rehabilitation strategies were discussed and agreed upon by all relevant stakeholders during the 1998 EES process. Subsequent review of proposed rehabilitation plans was conducted through assessment of work plan variations through direct referral by Earth Resource Regulation (ERR) and through discussions at Environmental Review Committee (ERC) meetings. Rehabilitation plans, work progress and results of monitoring are reported to the ERC Committee, including community representatives, by a suitably qualified consultant, in the quarterly operations report and at the quarterly ERC meetings.

8.3 Overview of Rehabilitation Activities 2017

The sites that were revegetated during 2017 are listed in Table 7 below and include the number of plants, amount of seeds and hectares planted. No large scale areas were disturbed during 2017 and no capping or backfilling activities occurred. There was infill planting amongst previously rehabilitated areas in order to increase species diversity and abundance where some plants may not have survived or thrived. Details of other activities are outlined below:

- Three exploration drill rig sites on McCormicks road were revegetated following completion of drilling. These areas were rehabilitated immediately after the drilling program ceased. The topsoil that was removed was stockpiled adjacent to the area and was placed back over the disturbed area prior to ripping, in preparation for planting. 100% of these areas were planted with local native species.

- Revegetation was also undertaken on a new visual bund wall at the top end of McCormick’s Road. Once further growth occurs this will make the approach to the mine site more visually appealing and will screen the view of workings and storage areas around Falcon Pit.

<table>
<thead>
<tr>
<th>Area</th>
<th>Seedings</th>
<th>Seed</th>
<th>Hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standpipe bund</td>
<td>922</td>
<td>1.9</td>
<td>0.65</td>
</tr>
<tr>
<td>Infill RSF paddock</td>
<td>6</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Epsom Fosterville roadway infill</td>
<td>130</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>McCormicks road drill revegetation</td>
<td>113</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Totals</td>
<td>1171</td>
<td>2.4</td>
<td>1.25</td>
</tr>
</tbody>
</table>
8.4 Rehabilitation Practices

Figure 9 outlines the locations of areas revegetated in 2017, as well as previous years. Native vegetation planted on site are typical for the Box Ironbark EVC which is predominant in and around the mining lease area. Seeds are collected at appropriate times of the year for the varying provenances that occur within the mining lease. Seeds are also collected from felled trees if possible. Some seeds are grown into tube stock for future planting, while other seeds are treated to enable successful germination via direct seeding.

8.5 Rehabilitation Monitoring

Various techniques are employed across the mine site area in order to monitor rehabilitated areas and vegetation to ensure the long term objectives are being achieved. These include photo points, assessment of designated quadrats in high risk areas and Landscape Function Analysis (LFA). Some of these methods are undertaken by FGM’s Environment Department and others are undertaken by consultants.
8.5.1 Spray Drift Vegetation Monitoring

Formal vegetation monitoring of designated quadrats around evaporation spray systems is currently undertaken on a quarterly basis to determine if any spray drift from the evaporation of mine water or CIL water is impacting on surrounding native vegetation and/or rehabilitation. The monitoring will continue while the evaporation spray systems are operational. The operation of the evaporation sprays however, will be phased out post closure.

8.5.2 Revegetation Monitoring

The Revegetation consultants are engaged to undertake monitoring of key rehabilitated areas to determine if the ecosystems are becoming self-sustaining and whether any ongoing management of these areas, such as weed control or infill plantings may be required in the future. For example, Daley’s Hill waste dump was monitored for over 10 years until it was determined to be self-sustaining and the rehabilitation bond for this area has now been almost completely relinquished. Current monitoring is now focused on McCormick’s Waste Dump and the O’Dwyers South Pit offset area. This is undertaken on a biannual basis. Monitoring results are provided at the quarterly ERC meetings.

8.5.3 Landscape Function Analysis

Landscape Function Analysis (LFA) is a monitoring procedure developed by the CSIRO. It provides a rapid, reliable, and easily applied method for assessing and monitoring landscape restoration or rehabilitation projects. LFA is recommended for the assessment and monitoring of rehabilitation work because it offers a range of advantages in addition to just vegetation monitoring, including the following:

• At the pre-rehabilitation stage, LFA allows the specific processes needing improvement to be identified;
• LFA can be applied to sites of all sizes, from an individual patch to a hillside; and all ecosystem types; and
• LFA also offers a detailed insight into how the landscape function at the rehabilitation site changes over time, and facilitates numerical comparison of restored/rehabilitated sites against reference sites.

Landscape function analysis monitoring started to be undertaken in 2016 by FGM’s Environment Department on key rehabilitated areas across the mine site. It is being completed on an annual basis.
9.0 COMMUNITY ENGAGEMENT

The purpose of the Community Engagement Plan is to ensure that each stakeholder or stakeholder group has a clear understanding of the operation, its processes and outcomes.

9.1 Overview of Community Engagement Plan

The purpose will be achieved through the demonstration of effective communication and consultation at all stages of the operation. Fosterville Gold Mine places a high value on community engagement and in maintaining the Company’s social licence to operate. This allows the operation to maximize benefits, both for the Company and the stakeholders, and minimize negative consequences.

Fosterville Gold Mine has adopted a combination of consultation techniques, with both formal and informal engagement activities used. The level and methods of engagement undertaken for each community or stakeholder group varies depending on the level of interest, level of influence and role in the operation.

Examples of engagement methods include:
- One on one meetings;
- Open information sessions and meetings;
- Disclosure of results;
- Project updates & Bulletins;
- Site visits;
- Environmental Review Committee meetings and tours;
- Project information review;
- Newsletters; and
- Facebook-social media.
9.2 Overview of Community Engagement Activities 2017

9.2.1 Complaints

There were three community complaints during the 2017 year.

The first community complaint was received in April regarding general mine and traffic noise at night. The complaint was not related to any specific incident. Noise monitoring is ongoing at night time, with noise breaches reported to the regulator as required. In addition continuous noise monitoring nearby the affected residence was conducted to provide additional information.

The second complaint was in relation to elevated noise during the day. The noise was caused by the exploration seismic truck which was being operated in areas surrounding the mine as part of exploration activities. Noise created during exploration activities is monitored with spot checks from sensitive receptors to ensure that noise limits are met.

The final community complaint was in regards to a larger than normal blast vibration in November. Follow up investigations determined there were issues with product retention of the explosive product causing an uncontrolled emission of explosive energy up a fault to the landholder’s property. An additional blast monitor was set up to monitor in the area to provide up to date information on the impacts from the operations blasting activities.

All complaints were investigated in consultation with the complainant, with monitoring details collected and provided where applicable. The complaints are also discussed at the quarterly ERC meetings.

9.2.2 Activities

Environmental Review Committee meetings were held each quarter to share operational information, project updates, environmental performance and community activities with members of the committee. The committee is made up of Government regulators (Earth Resources Regulation, Victorian EPA, and Goulburn-Murray Water), City of Greater Bendigo members, local community representatives and Fosterville employees.

Community meetings and mobile information booths were held in Goornong and Axedale to discuss the future exploration strategy with the local communities.

Mobile information booths were also held in Elmore and Redesdale to answer any questions the community had and provide information on exploration.

Two rounds of community grants were held, with thirteen local and regional recipients receiving a total of $20,862 between them. Since the community grants program began in 2005 the Company has allocated more than $251,000 to 175 local community groups. The aim of the grants is to provide funds for projects or activities that benefit the local area and enhance the social, educational, recreational and environmental aspects of the community in which we operate. Four Fosterville community newsletters were prepared and released to the local community. Information regarding project upgrades, community grants, operational information, and exploration activities are included in the newsletter.

The annual Fosterville Family and Friends Day was held on Sunday October 1st and Ian gave an update on the operations at Fosterville. It was a lovely day for families and friends with connections to the old Fosterville Township to meet at the Winzar mud brick house and catch up over lunch, songs and music.
Projects that received funding in the grant allocations included:

- Bendigo Central Deborah Gold Mine for purchase of a defibrillator: $2,000
- Strathfieldsaye Football / Netball Club for a public address system: $2,000
- Bendigo Science and Discovery Centre for a projector: $1,800
- Eaglehawk Hockey Club for hockey equipment: $1,450
- St Paul’s Anglican Church for a stove to assist disability catering education: $1,250
- Bendigo Squash Club for operation Junior Juggernauts: $1,200
- Elmore Memorial Hall Committee for an upgrade of their disabled toilet facilities: $2,000
- Dragons Abreast Bendigo for upgrading of equipment: $1,582
- Eaglehawk Secondary College for an inclusion program and outdoor classroom: $1,080
- Axedale Golf Club for the upgrade of the vehicle/pedestrian bridge: $2,000
- Kamarooka Recreation Reserve for a veranda installation: $2,000
- Junortoun Fire Brigade for the purchase of specialised light torches: $2,000
- Elmore Tennis Club for the purchase of a new blower: $500

As well as grants for the community, the mine has sponsored a number of other events and groups throughout the year including: Victorian Gold Panning Association, Leukemia Foundation, Victorian Rock Drill Championships, Dolly Partons Imagination Library Bendigo, Laanecoorie Gold Bash, Axedale Quick Shears, Axedale Primary School, Oscar 1 Emergency Response Team, Australian NPC Disease Foundation, Goornong Primary School Swim Program, Axedale Community Carols, El Disaster Mallee Run Inc. & Drags, Bendigo Bank Fun Run.

CASE STUDY

DJA DJA WURRUNG TRAM

The Dja Dja Wurrung People have called Bendigo home for thousands of years, and are also the traditional owners of the Fosterville area.

The Bendigo trams have operated since 1890, and are still popular today as a tourist attraction.

A collaboration between the Dja Dja Wurrung and the Bendigo tramways resulted in the creation of a tram dedicated to the Aboriginal people to bring alive their stories about history and creation. The Dja Dja Wurrung Tram allows a story to be told which is 40,000 years in the making, whilst surrounded by Aboriginal artwork and travelling through Bendigo.

Fosterville Gold Mine was proud to be able to support this initiative by funding the audio which forms an important part of the tram experience. This commentary was narrated by the Dja Dja Wurrung Clans Aboriginal Corporation staff and the tram was painted by Aboriginal artist Natasha Carter.
10.0

COMPLIANCE RECORD

Kirkland Lake Gold maintains a clear communication channel with DEDJTR Earth Resources Regulation and other relevant Government regulators in regards to any events that occur at the Fosterville operation. In addition to the regular site inspections, a visit from the Victorian Minister of Resources was held during 2017 to show the operations at the site.

10.1 Reportable Events

A risk based incident assessment system has been developed at Fosterville, based on the specifications in the Guidance Note on Reportable Events for Mineral and extractive Operations (EEV 2013). Under this system any incident is reportable if it is considered to be significant and outside normal operating conditions.

Examples of reportable events under the risk based system may fall under the following categories:

**High Risk Visible and Current Events**
- Incidents that have potential to have limited impact offsite;
- Incidents that are moderate in scale or rare variance from normal operations;
- Potential for unauthorised discharge offsite;
- Potential for a breach or non-compliance of Mining Licence; and
- Potential to cause failure of key infrastructure.

**High Risk Events indicated through monitoring**
- Where consistent monitoring indicates a minor or unexpected change; and
- Where consistent monitoring indicates potential for an exceedance of environmental emissions.

**High Risk events that may contribute to a significant increase in risk to external parties.**

Reportable events are not events that occur as expected during normal operations, even though they may be significant.

No reportable incidents occurred at Fosterville Gold Mine during 2017, however communication with the regulators is ongoing to ensure that best environmental practice is maintained and environmental performance is continually improved. There is regular engagement with regulators, who provide feedback on environmental improvements and performance.